Suppr超能文献

催化水凝胶膜反应器处理氧化污染物的活性和稳定性。

Activity and stability of the catalytic hydrogel membrane reactor for treating oxidized contaminants.

机构信息

University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, USA.

University of Notre Dame, Department of Chemical and Biomolecular Engineering, USA.

出版信息

Water Res. 2020 May 1;174:115593. doi: 10.1016/j.watres.2020.115593. Epub 2020 Feb 7.

Abstract

The catalytic hydrogel membrane reactor (CHMR) is an interfacial membrane process that uses nano-sized catalysts for the hydrogenation of oxidized contaminants in drinking water. In this study, the CHMR was operated as a continuous-flow reactor using nitrite (NO) as a model contaminant and palladium (Pd) as a model catalyst. Using the overall bulk reaction rate for NO reduction as a metric for catalytic activity, we evaluated the effect of the hydrogen gas (H) delivery method to the CHMR, the initial H and NO concentrations, Pd density in the hydrogel, and the presence of Pd-deactivating species. The chemical stability of the catalytic hydrogel was evaluated in the presence of aqueous cations (H, Na, Ca) and a mixture of ions in a hard groundwater. Delivering H to the CHMR lumens using a vented operation mode, where the reactor is sealed and the lumens are periodically flushed to the atmosphere, allowed for a combination of a high H consumption efficiency and catalytic activity. The overall reaction rate of NO was dependent on relative concentrations of H and NO at catalytic sites, which was governed by both the chemical reaction and mass transport rates. The intrinsic catalytic reaction rate was combined with a counter-diffusional mass transport component in a 1-D computational model to describe the CHMR. Common Pd-deactivating species [sulfite, bisulfide, natural organic matter] hindered the reaction rate, but the hydrogel afforded some protection from deactivation compared to a batch suspension. No chemical degradation of the hydrogel structure was observed for a model water (pH > 4, Na, Ca) and a hard groundwater after 21 days of exposure, attesting to its stability under natural water conditions.

摘要

催化水凝胶膜反应器(CHMR)是一种界面膜过程,使用纳米级催化剂将饮用水中氧化污染物加氢。在这项研究中,以亚硝酸盐(NO)为模型污染物,钯(Pd)为模型催化剂,将 CHMR 作为连续流反应器运行。以 NO 还原的总体体相反应速率作为催化活性的度量标准,我们评估了向 CHMR 输送氢气(H)的方法、H 和 NO 的初始浓度、水凝胶中 Pd 的密度以及存在使 Pd 失活的物质对 CHMR 的影响。在存在水合阳离子(H、Na、Ca)和硬地下水混合离子的情况下,评估了催化水凝胶的化学稳定性。使用通气操作模式向 CHMR 腔室输送 H,其中反应器密封并且腔室定期吹扫至大气中,允许结合高 H 消耗效率和催化活性。NO 的总反应速率取决于催化位点处 H 和 NO 的相对浓度,这由化学反应和质量传递速率共同控制。本征催化反应速率与 1-D 计算模型中的反扩散质量传递组件相结合,以描述 CHMR。常见的 Pd 失活物质[亚硫酸盐、连二硫酸盐、天然有机物]会阻碍反应速率,但与批处理悬浮液相比,水凝胶为失活提供了一些保护。在暴露 21 天后,模型水(pH>4、Na、Ca)和硬地下水对水凝胶结构没有观察到化学降解,证明其在天然水条件下稳定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验