Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 27002 Lugo, Spain; Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna 9208, Bangladesh.
Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain.
Int J Parasitol. 2020 Mar;50(3):195-208. doi: 10.1016/j.ijpara.2019.11.008. Epub 2020 Feb 20.
The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest global production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum-P. olseni interactions, we analysed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid understanding the response and interaction between R. philippinarum and P. olseni, and will contribute to developing effective control strategies for this threatening parasitosis.
菲律宾蛤仔(Ruditapes philippinarum)是全球渔业和水产养殖产量最高的双壳贝类,但由于原生动物寄生虫派琴虫(Perkinsus olseni)引起的派琴虫病,其产量受到严重威胁。为了了解菲律宾蛤仔-派琴虫相互作用的分子机制,我们使用两种寡微阵列平台分析了体外挑战蛤血细胞和派琴虫滋养体的基因表达谱,一个是之前为菲律宾蛤仔血细胞验证的,另一个是本研究中为派琴虫开发和验证的。体外用派琴虫滋养体、游孢子和体外培养的派琴虫胞外产物对蛤血细胞进行体外挑战,同时沿相同时间序列(1 h、8 h 和 24 h)用菲律宾蛤仔血浆对派琴虫滋养体进行体外挑战。三种类型的挑战都迅速激活了先天免疫反应,特别是与血细胞募集相关的反应。然而,不同的免疫相关途径被激活以响应不同的寄生虫阶段,这表明存在特定的识别机制。此外,这些分析提供了与之前体内挑战有用的互补数据,并证实了一些提议的生物标志物的潜力。宿主和寄生虫基因表达的综合分析确定了蛤和派琴虫中的几个过程,如氧化还原和葡萄糖代谢、蛋白酶活性、细胞凋亡和铁代谢,其调节表明寄生虫和宿主之间存在串扰。这些信息可能对确定感染的结果至关重要,从而突出了潜在的治疗靶点。总之,这项研究的结果有助于理解菲律宾蛤仔和派琴虫之间的反应和相互作用,并将有助于开发针对这种威胁性寄生虫病的有效控制策略。