Suppr超能文献

高激发态苊和并四苯中电子弛豫的理论研究:扶手椅型与锯齿型边缘的影响

Theoretical investigation of the electronic relaxation in highly excited chrysene and tetracene: The effect of armchair vs zigzag edge.

作者信息

Posenitskiy Evgeny, Rapacioli Mathias, Lemoine Didier, Spiegelman Fernand

机构信息

Laboratoire Collisions Agrégats et Réactivité (LCAR), IRSAMC UMR5589, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.

Laboratoire de Chimie et Physique Quantiques (LCPQ), IRSAMC UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.

出版信息

J Chem Phys. 2020 Feb 21;152(7):074306. doi: 10.1063/1.5135369.

Abstract

Non-adiabatic molecular dynamics of neutral chrysene and tetracene molecules is investigated using Tully's fewest switches surface hopping algorithm coupled to the time-dependent density functional based tight-binding (TD-DFTB) method for electronic structure calculations. We first assess the performance of two DFTB parameter sets based on the computed TD-DFTB absorption spectra. The main focus is given to the analysis of the electronic relaxation from the brightest excited state following absorption of a UV photon. We determine the dynamical relaxation times and discuss the underlying mechanisms. Our results show that the electronic population of the brightest excited singlet state in armchair-edge chrysene decays an order-of-magnitude faster than the one in zigzag-edge tetracene. This is correlated with a qualitatively similar difference of energy gaps between the brightest state and the state lying just below in energy, which is also consistent with our previous study on polyacenes.

摘要

使用与基于含时密度泛函的紧束缚(TD-DFTB)方法耦合的塔利最少开关表面跳跃算法研究了中性并四苯和萘并四苯分子的非绝热分子动力学,以进行电子结构计算。我们首先根据计算出的TD-DFTB吸收光谱评估了两个DFTB参数集的性能。主要重点是分析在吸收紫外光子后从最亮激发态的电子弛豫。我们确定了动态弛豫时间并讨论了潜在机制。我们的结果表明,扶手椅边缘并四苯中最亮激发单重态的电子布居衰减速度比锯齿边缘萘并四苯中的快一个数量级。这与最亮态与能量略低于其的态之间能隙的定性相似差异相关,这也与我们之前对多并苯的研究一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验