Pharmacokinetics, Dynamics and Metabolism (S.Y.), Pharmaceutical Science (H.J.G.), and Oncology Research Unit (H.W., S.U., S.S.), Pfizer Worldwide Research & Development, San Diego, California
Pharmacokinetics, Dynamics and Metabolism (S.Y.), Pharmaceutical Science (H.J.G.), and Oncology Research Unit (H.W., S.U., S.S.), Pfizer Worldwide Research & Development, San Diego, California.
J Pharmacol Exp Ther. 2020 May;373(2):220-229. doi: 10.1124/jpet.119.263491. Epub 2020 Feb 24.
PF06821497 has been identified as an orally available small-molecule enhancer of zeste homolog 2 inhibitor. The objectives of the present study were to characterize pharmacokinetic-pharmacodynamic-disease relationships of PF06821497 in xenograft mouse models with diffuse large B-cell lymphoma (Karpas422). An indirect-response model reasonably fit dose-dependent pharmacodynamic responses [histone H3 on lysine 27 (H3K27) me3 inhibition] with an unbound of 76 nM, whereas a signal-transduction model sufficiently fit dose-dependent disease responses (tumor growth inhibition) with an unbound tumor stasis concentration ( ) of 168 nM. Thus, effective concentration for 70% of maximal effect (EC) for H3K27me3 inhibition was roughly comparable to , suggesting that 70% H3K27me3 inhibition could be required for tumor stasis. Consistently, an integrated pharmacokinetic-pharmacodynamic-disease model adequately describing tumor growth inhibition also suggested that ∼70% H3K27me3 inhibition was associated with tumor stasis. Based on these results, we would propose that an EC estimate for H3K27me3 inhibition corresponding to tumor stasis could be considered a minimum target efficacious concentration of PF06821497 in cancer patients. SIGNIFICANCE STATEMENT: Using a mathematical modeling approach, the quantitative relationships of an orally available anticancer small-molecule enhancer of zeste homolog 2 inhibitor, PF06821497, were characterized among pharmacokinetics, pharmacodynamic biomarker inhibition, and disease responses in nonclinical xenograft models with diffuse large B-cell lymphoma. The modeling results suggest that >70% histone H3 on lysine 27 (H3K27) me3 inhibition would be required for tumor stasis (i.e., 100% tumor growth inhibition). Accordingly, we would propose that an effective concentration for 70% of maximal effect estimate for H3K27me3 inhibition could be considered a minimum target efficacious concentration of PF06821497 in cancer patients.
PF06821497 已被确定为一种可口服的、增强 Zeste 同源物 2 抑制剂的小分子。本研究的目的是在弥漫性大 B 细胞淋巴瘤(Karpas422)的异种移植小鼠模型中,对 PF06821497 的药代动力学-药效动力学-疾病关系进行特征描述。间接反应模型合理地拟合了剂量依赖性药效反应[组蛋白 H3 赖氨酸 27 上的三甲基化(H3K27me3)抑制],无约束态的 为 76 nM,而信号转导模型则充分拟合了剂量依赖性疾病反应(肿瘤生长抑制),无约束肿瘤停滞浓度( )为 168 nM。因此,70%最大效应有效浓度(EC)的 H3K27me3 抑制作用大致相当于 ,表明肿瘤停滞需要 70%的 H3K27me3 抑制作用。一致地,一个综合的药代动力学-药效动力学-疾病模型充分描述了肿瘤生长抑制,也表明大约 70%的 H3K27me3 抑制作用与肿瘤停滞有关。基于这些结果,我们建议将对应于肿瘤停滞的 H3K27me3 抑制的 EC 估计值作为癌症患者中 PF06821497 的最小目标有效浓度。
使用数学建模方法,在弥漫性大 B 细胞淋巴瘤的非临床异种移植模型中,对可口服的抗癌小分子增强 Zeste 同源物 2 抑制剂 PF06821497 的药代动力学、药效生物标志物抑制作用和疾病反应之间的定量关系进行了特征描述。模型结果表明,肿瘤停滞需要超过 70%的组蛋白 H3 赖氨酸 27(H3K27)上的三甲基化(H3K27me3)抑制作用(即 100%的肿瘤生长抑制)。因此,我们建议,H3K27me3 抑制作用的 70%最大效应有效浓度估计值可以被认为是癌症患者中 PF06821497 的最小目标有效浓度。