Farahi Rubye H, Lereu Aude L, Charrier Anne M, Kalluri Udaya C, Davison Brian H, Passian Ali
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
Aix Marseille University, CNRS, Centrale Marseille, Institut Fresnel, Marseille 13397, France.
ACS Omega. 2020 Feb 6;5(6):2594-2602. doi: 10.1021/acsomega.9b02849. eCollection 2020 Feb 18.
Alternative energy strategies based on plant biomass-derived bioenergy and biofuels rely on understanding and optimization of plant structure, chemistry, and performance. Starch, a constitutive element of all green plants, is important to food, biofuels, and industrial applications. Models of carbohydrate storage granules are highly heterogeneous in representing morphology and structure, though a deeper understanding of the role of structure in functional behavior is emerging. A better understanding of the in situ nanoscale properties of native granules is needed to help improve the starch quality in food crops as well as optimize lignocellulosic biomass production in perennial nonfood crops. Here, we present a new technique called soft mechanical nano-ablation (sMNA) for accessing the interior of the granules without compromising the inner nanostructure. We then explore the nanomechanics of granules within the ray parenchyma cells of xylem, a desirable woody biofuel feedstock. The employed soft outer layer nanoablation and atomic force microscopy reveal that the inner structure comprises 156 nm blocklets arranged in a semicrystalline organization. The nanomechanical properties of the inner and outer structures of a single starch granule are measured and found to exhibit large variations, changing by a factor of 3 in Young's modulus and a factor of 2 in viscoplastic index. These findings demonstrate how the introduced approach facilitates studies of structure-function relationships among starch granules and more complex secondary cell wall features as they relate to plant performance.
基于植物生物质衍生的生物能源和生物燃料的替代能源战略依赖于对植物结构、化学和性能的理解与优化。淀粉作为所有绿色植物的组成元素,对食品、生物燃料及工业应用都很重要。碳水化合物储存颗粒的模型在表征形态和结构方面高度异质,不过对结构在功能行为中作用的更深入理解正在浮现。需要更好地了解天然颗粒的原位纳米尺度特性,以帮助提高粮食作物的淀粉质量,并优化多年生非粮食作物中木质纤维素生物质的生产。在此,我们提出一种名为软机械纳米烧蚀(sMNA)的新技术,用于在不破坏内部纳米结构的情况下进入颗粒内部。然后,我们探索了木质部射线薄壁细胞内颗粒的纳米力学,木质部是一种理想的木质生物燃料原料。所采用的软外层纳米烧蚀和原子力显微镜显示,内部结构由排列成半结晶组织的156纳米小块组成。对单个淀粉颗粒的内部和外部结构的纳米力学性能进行了测量,发现其表现出很大的变化,杨氏模量变化了3倍,粘塑性指数变化了2倍。这些发现证明了所引入的方法如何促进对淀粉颗粒与更复杂的次生细胞壁特征之间结构-功能关系的研究,因为它们与植物性能相关。