Suppr超能文献

利用偏微分方程分析预测斑秃病变的时空动态。

Toward Predicting the Spatio-Temporal Dynamics of Alopecia Areata Lesions Using Partial Differential Equation Analysis.

机构信息

Department of Mathematics, North Carolina State University, 2108 SAS Hall, 2311 Stinson Drive, Raleigh, NC, 27695, USA.

Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.

出版信息

Bull Math Biol. 2020 Feb 24;82(3):34. doi: 10.1007/s11538-020-00707-0.

Abstract

Hair loss in the autoimmune disease, alopecia areata (AA), is characterized by the appearance of circularly spreading alopecic lesions in seemingly healthy skin. The distinct spatial patterns of AA lesions form because the immune system attacks hair follicle cells that are in the process of producing hair shaft, catapults the mini-organs that produce hair from a state of growth (anagen) into an apoptosis-driven regression state (catagen), and causes major hair follicle dystrophy along with rapid hair shaft shedding. In this paper, we develop a model of partial differential equations (PDEs) to describe the spatio-temporal dynamics of immune system components that clinical and experimental studies show are primarily involved in the disease development. Global linear stability analysis reveals there is a most unstable mode giving rise to a pattern. The most unstable mode indicates a spatial scale consistent with results of the humanized AA mouse model of Gilhar et al. (Autoimmun Rev 15(7):726-735, 2016) for experimentally induced AA lesions. Numerical simulations of the PDE system confirm our analytic findings and illustrate the formation of a pattern that is characteristic of the spatio-temporal AA dynamics. We apply marginal linear stability analysis to examine and predict the pattern propagation.

摘要

自身免疫性疾病脱发症(斑秃)的特征是在看似健康的皮肤中出现圆形扩散的脱发病变。AA 病变的明显空间模式形成的原因是免疫系统攻击处于产生毛发阶段的毛囊细胞,使这些微型器官从生长(生长期)状态突然进入凋亡驱动的退化状态(退行期),并导致主要的毛囊营养不良和快速的毛发脱落。在本文中,我们开发了一个偏微分方程(PDE)模型来描述临床和实验研究表明主要参与疾病发展的免疫系统成分的时空动力学。全局线性稳定性分析揭示存在一个最不稳定模式,导致出现一种模式。最不稳定模式表明存在一个空间尺度,与 Gilhar 等人的人类化 AA 小鼠模型(Autoimmun Rev 15(7):726-735, 2016)中实验诱导的 AA 病变结果一致。PDE 系统的数值模拟证实了我们的分析结果,并说明了一种与 AA 时空动力学特征一致的模式的形成。我们应用边缘线性稳定性分析来检查和预测模式传播。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验