Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
Natural Science Center for Basic Research and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
Langmuir. 2020 Mar 17;36(10):2553-2562. doi: 10.1021/acs.langmuir.0c00334. Epub 2020 Mar 4.
Gold-silica (Au-SiO) nanohybrids are of great technological importance, and it is crucial to develop facile synthetic protocols to prepare Au-SiO nanohybrids with novel structures. Here we report the bioinspired synthesis of pomegranate-like SiO@Au nanoparticles (P-SiO@Au NPs) via one-step aqueous synthesis from chloroauric acid and tetraethyl orthosilicate mediated by a basic amino acid, arginine. Effects of chloroauric acid, tetraethyl orthosilicate, and arginine on the morphology and optical property of the products are investigated in detail. The P-SiO@Au NPs achieve tunable plasmon resonance depending on the amount of chloroauric acid, which affects the size and shape of the P-SiO@Au NPs. Finite-difference time-domain simulations are performed, revealing that the plasmon peak red-shifts with increasing particle size. Arginine serves as the reducing and capping agents for Au as well as the catalyst for SiO formation and also promotes the combination of Au and SiO. Formation process of the P-SiO@Au NPs is clarified through time-course analysis. The P-SiO@Au NPs show good sensitivity for both colloidal and paper-based surface-enhanced Raman scattering measurements. They achieve enhancement factors of 4.3 × 10-8.5 × 10 and a mass detection limit of ca. 1 ng using thiophenol as the model analyte.
金-二氧化硅(Au-SiO)纳米杂化材料具有重要的技术意义,开发简便的合成方法制备具有新颖结构的 Au-SiO 纳米杂化材料至关重要。在此,我们通过氯金酸和正硅酸乙酯在碱性氨基酸精氨酸的介导下一步水相合成,报告了石榴状 SiO@Au 纳米粒子(P-SiO@Au NPs)的生物启发合成。详细研究了氯金酸、正硅酸乙酯和精氨酸对产物形貌和光学性质的影响。P-SiO@Au NPs 的等离子体共振可通过调节氯金酸的量进行调谐,这会影响 P-SiO@Au NPs 的尺寸和形状。进行了时域有限差分模拟,结果表明等离子体峰随着粒径的增加而红移。精氨酸不仅是 Au 的还原和封端试剂,也是 SiO 形成的催化剂,还促进了 Au 和 SiO 的结合。通过时间进程分析阐明了 P-SiO@Au NPs 的形成过程。P-SiO@Au NPs 在胶体和基于纸张的表面增强拉曼散射测量中均表现出良好的灵敏度。使用噻吩作为模型分析物,它们的增强因子为 4.3×10-8.5×10,质量检测限约为 1ng。