Aichi Prefectural Institute of Public Health, Japan.
Department of Pharmacology, Aichi Medical University School of Medicine, Japan.
Eur J Pharmacol. 2020 May 15;875:173034. doi: 10.1016/j.ejphar.2020.173034. Epub 2020 Feb 22.
Glucoprivation stimulates a rapid sympathetic response to release and/or secrete catecholamines into the bloodstream. However, the central regulatory mechanisms involving adrenoceptors and prostanoids production in the paraventricular hypothalamic nucleus (PVN) that are responsible for the glucoprivation-induced elevation of plasma catecholamines are still unresolved. In this study, we aimed to clarify whether glucoprivation-induced activation of noradrenergic neurons projecting to the PVN can induce α- and/or β-adrenergic receptor activation and prostanoids production in the PVN to elevate plasma catecholamine levels. We examined the effects of α- and β-adrenergic receptor antagonists, a cyclooxygenase inhibitor, a thromboxane A synthase inhibitor, and a PGE subtype EP receptor antagonist on intravenously administered 2-deoxy-D-glucose (2-DG)-induced elevation of noradrenaline in the PVN and plasma levels of catecholamine in freely moving rats. In addition, we examined whether intravenously administered 2-DG can increase prostanoids levels in the PVN microdialysates. Intracerebroventricular (i.c.v.) pretreatment with phentolamine (a non-selective α-adrenergic receptor antagonist) suppressed the 2-DG-induced increase in the plasma level of adrenaline, whereas i.c.v. pretreatment with propranolol (a non-selective β-adrenergic receptor antagonist) suppressed the 2-DG-induced elevation of the plasma level of noradrenaline. I.c.v. pretreatment with indomethacin (a cyclooxygenase inhibitor) and furegrelate (a thromboxane synthase inhibitor) attenuated the 2-DG-induced elevations of both noradrenaline and adrenaline levels. Furthermore, 2-DG administration elevated the thromboxane B level, a metabolite of thromboxane A in PVN microdialysates. Our results suggest that glucoprivation-induced activation of α- and β-adrenergic receptor in the brain including the PVN and then thromboxane A production in the PVN, which are essential for the 2-DG-induced elevations of both plasma adrenaline and noradrenaline levels.
糖剥夺会刺激交感神经系统迅速作出反应,将儿茶酚胺释放或分泌到血液中。然而,涉及到肾上腺素能受体和前列腺素产生的位于下丘脑室旁核(PVN)的中枢调节机制,对于糖剥夺引起的血浆儿茶酚胺升高仍然没有得到解决。在这项研究中,我们旨在阐明糖剥夺是否会激活投射到 PVN 的去甲肾上腺素能神经元,从而诱导 PVN 中的α-和/或β-肾上腺素能受体激活和前列腺素产生,以升高血浆儿茶酚胺水平。我们检查了α-和β-肾上腺素能受体拮抗剂、环氧化酶抑制剂、血栓素 A 合酶抑制剂和 PGE 亚型 EP 受体拮抗剂对静脉注射 2-脱氧-D-葡萄糖(2-DG)引起的 PVN 去甲肾上腺素和自由活动大鼠血浆儿茶酚胺水平升高的影响。此外,我们还检查了静脉注射 2-DG 是否会增加 PVN 微透析液中的前列腺素水平。脑室(i.c.v.)预先用苯肾上腺素(一种非选择性α-肾上腺素能受体拮抗剂)预处理可抑制 2-DG 引起的肾上腺素血浆水平升高,而脑室预先用普萘洛尔(一种非选择性β-肾上腺素能受体拮抗剂)预处理可抑制 2-DG 引起的去甲肾上腺素血浆水平升高。脑室预先用吲哚美辛(环氧化酶抑制剂)和呋塞米(血栓素合酶抑制剂)预处理可减轻 2-DG 引起的去甲肾上腺素和肾上腺素水平升高。此外,2-DG 给药可升高血栓素 B 水平,这是 PVN 微透析液中血栓素 A 的代谢产物。我们的结果表明,糖剥夺会激活大脑中的α-和β-肾上腺素能受体,包括 PVN,然后在 PVN 中产生血栓素 A,这对于 2-DG 引起的血浆肾上腺素和去甲肾上腺素水平升高是必不可少的。