Suppr超能文献

利用拉曼光谱、非负矩阵分解和非负最小二乘法监测电离辐射诱导的细胞反应。

Monitor Ionizing Radiation-Induced Cellular Responses with Raman Spectroscopy, Non-Negative Matrix Factorization, and Non-Negative Least Squares.

机构信息

Department of Physics, I.K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, Canada.

Department of Statistics, I.K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, Canada.

出版信息

Appl Spectrosc. 2020 Jun;74(6):701-711. doi: 10.1177/0003702820906221. Epub 2020 Mar 18.

Abstract

Radiation therapy (RT) is one of the most commonly prescribed cancer treatments. New tools that can accurately monitor and evaluate individual patient responses would be a major advantage and lend to the implementation of personalized treatment plans. In this study, Raman spectroscopy (RS) was applied to examine radiation-induced cellular responses in H460, MCF7, and LNCaP cancer cell lines across different dose levels and times post-irradiation. Previous Raman data analysis was conducted using principal component analysis (PCA), which showed the ability to extract biological information of glycogen. In the current studies, the use of non-negative matrix factorization (NMF) allowed for the discovery of multiplexed biological information, specifically uncovering glycogen-like and lipid-like component bases. The corresponding scores of glycogen and previously unidentified lipids revealed the content variations of these two chemicals in the cellular data. The NMF decomposed glycogen and lipid-like bases were able to separate the cancer cell lines into radiosensitive and radioresistant groups. A further lipid phenotype investigation was also attempted by applying non-negative least squares (NNLS) to the lipid-like bases decomposed individually from three cell lines. Qualitative differences found in lipid weights for each lipid-like basis suggest the lipid phenotype differences in the three tested cancer cell lines. Collectively, this study demonstrates that the application of NMF and NNLS on RS data analysis to monitor ionizing radiation-induced cellular responses can yield multiplexed biological information on bio-response to RT not revealed by conventional chemometric approaches.

摘要

放射治疗(RT)是最常用的癌症治疗方法之一。能够准确监测和评估个体患者反应的新工具将是一个主要优势,并有助于实施个性化治疗计划。在这项研究中,拉曼光谱(RS)被应用于检查 H460、MCF7 和 LNCaP 癌细胞系在不同剂量水平和辐照后时间的辐射诱导的细胞反应。以前的拉曼数据分析使用主成分分析(PCA)进行,该分析显示了提取糖原生物信息的能力。在当前的研究中,使用非负矩阵分解(NMF)允许发现多路生物信息,特别是揭示了类似于糖原和类脂的成分基础。糖原和以前未识别的脂质的相应分数揭示了这两种化学物质在细胞数据中的含量变化。NMF 分解的糖原和类脂基础能够将癌细胞系分为辐射敏感和辐射抵抗组。还通过对来自三个细胞系的单独分解的类脂基础应用非负最小二乘法(NNLS)尝试进行进一步的脂类表型研究。对每个类脂基础的脂类重量的定性差异表明,三种测试的癌细胞系中的脂类表型差异。总的来说,这项研究表明,将 NMF 和 NNLS 应用于 RS 数据分析以监测电离辐射诱导的细胞反应,可以提供常规化学计量方法未揭示的生物对 RT 反应的多路生物信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验