Suppr超能文献

利用 CRISPR 技术解析染色体基因的生育功能。

Dissecting Fertility Functions of a Chromosome Genes with CRISPR.

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853.

出版信息

Genetics. 2020 Apr;214(4):977-990. doi: 10.1534/genetics.120.302672. Epub 2020 Feb 25.

Abstract

Gene-poor, repeat-rich regions of the genome are poorly understood and have been understudied due to technical challenges and the misconception that they are degenerating "junk." Yet multiple lines of evidence indicate these regions may be an important source of variation that could drive adaptation and species divergence, particularly through regulation of fertility. The ∼40 Mb chromosome of contains only 16 known protein-coding genes, and is highly repetitive and entirely heterochromatic. Most of the genes originated from duplication of autosomal genes and have reduced nonsynonymous substitution rates, suggesting functional constraint. We devised a genetic strategy for recovering and retaining stocks with sterile -linked mutations and combined it with CRISPR to create mutants with deletions that disrupt three -linked genes. Two genes, and , had no previously identified functions. We found that mutant males are subfertile, but mutant males had no detectable fertility defects. , the newest known gene on the chromosome, may have fertility effects that are conditional or too subtle to detect. The third gene, , had been predicted but never formally shown to be required for male fertility. CRISPR targeting and RNA interference of caused male sterility. Surprisingly, however, our mutants were sterile even in the presence of an extra wild-type chromosome, suggesting that perturbation of the chromosome can lead to dominant sterility. Our approach provides an important step toward understanding the complex functions of the chromosome and parsing which functions are accomplished by genes repeat elements.

摘要

基因组中基因匮乏、重复序列丰富的区域尚未被充分了解,研究也相对较少,这主要是由于技术挑战以及认为这些区域是退化的“垃圾”的误解。然而,多条证据表明,这些区域可能是变异的重要来源,可以驱动适应和物种分化,特别是通过调节生育能力。含有 40Mb 基因组的 号染色体仅包含 16 个已知的蛋白编码基因,高度重复且完全异染色质化。大多数基因起源于常染色体基因的重复,具有较低的非同义替换率,表明受到了功能约束。我们设计了一种遗传策略,用于回收和保留与 染色体连锁的不育突变体,并将其与 CRISPR 结合,创建了破坏三个 染色体连锁基因的缺失突变体。两个基因 和 以前没有确定的功能。我们发现 突变体雄性的繁殖力降低,但 突变体雄性的繁殖力缺陷无法检测到。 是 染色体上新发现的基因,可能具有条件性或太细微而无法检测到的生育力效应。第三个基因 ,虽然已经被预测,但从未被正式证明是雄性生育所必需的。CRISPR 靶向和 的 RNA 干扰导致雄性不育。然而,令人惊讶的是,我们的 突变体即使在存在额外的野生型 染色体时也是不育的,这表明 染色体的扰动会导致显性不育。我们的方法为理解 染色体的复杂功能以及解析哪些功能是由基因和重复元件完成的提供了重要的一步。

相似文献

1
Dissecting Fertility Functions of a Chromosome Genes with CRISPR.利用 CRISPR 技术解析染色体基因的生育功能。
Genetics. 2020 Apr;214(4):977-990. doi: 10.1534/genetics.120.302672. Epub 2020 Feb 25.
2
The Role of Y Chromosome Genes in Male Fertility in .Y 染色体基因在 中的男性生育力作用。
Genetics. 2020 Jul;215(3):623-633. doi: 10.1534/genetics.120.303324. Epub 2020 May 13.
3
Birth of a new gene on the Y chromosome of Drosophila melanogaster.黑腹果蝇Y染色体上新基因的诞生。
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12450-5. doi: 10.1073/pnas.1516543112. Epub 2015 Sep 18.

引用本文的文献

10
The Role of Y Chromosome Genes in Male Fertility in .Y 染色体基因在 中的男性生育力作用。
Genetics. 2020 Jul;215(3):623-633. doi: 10.1534/genetics.120.303324. Epub 2020 May 13.

本文引用的文献

3
FlyBase 2.0: the next generation.FlyBase 2.0:下一代。
Nucleic Acids Res. 2019 Jan 8;47(D1):D759-D765. doi: 10.1093/nar/gky1003.
6
High rate of translocation-based gene birth on the Y chromosome.Y 染色体上基于易位的基因产生率很高。
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11721-11726. doi: 10.1073/pnas.1706502114. Epub 2017 Oct 19.
8
The Biology and Evolution of Mammalian Y Chromosomes.哺乳动物 Y 染色体的生物学与演化。
Annu Rev Genet. 2015;49:507-27. doi: 10.1146/annurev-genet-112414-055311. Epub 2015 Oct 6.
9
Separating from the pack: Molecular mechanisms of spermatid individualization.脱离群体:精子细胞个体化的分子机制
Spermatogenesis. 2015 May 21;5(2):e1041345. doi: 10.1080/21565562.2015.1041345. eCollection 2015 May-Aug.
10
Birth of a new gene on the Y chromosome of Drosophila melanogaster.黑腹果蝇Y染色体上新基因的诞生。
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12450-5. doi: 10.1073/pnas.1516543112. Epub 2015 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验