Suppr超能文献

ATP合酶亚基a支持缺乏二聚化亚基的酵母中的通透性转换并调节线粒体通透性转换孔(yPTP)电导

ATP Synthase Subunit a Supports Permeability Transition in Yeast Lacking Dimerization Subunits and Modulates yPTP Conductance.

作者信息

Niedzwiecka Katarzyna, Baranowska Emilia, Panja Chiranjit, Kucharczyk Roza

机构信息

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland,

出版信息

Cell Physiol Biochem. 2020 Feb 27;54(2):211-229. doi: 10.33594/000000215.

Abstract

BACKGROUND/AIMS: Mitochondrial ATP synthase, in addition to being involved in ATP synthesis, is involved in permeability transition pore (PTP) formation, which precedes apoptosis in mammalian cells and programmed cell death in yeast. Mutations in genes encoding ATP synthase subunits cause neuromuscular disorders and have been identified in cancer samples. PTP is also involved in pathology. We previously found that in Saccharomyces cerevisiae, two mutations in ATP synthase subunit a (atp6-P163S and atp6-K90E, equivalent to those detected in prostate and thyroid cancer samples, respectively) in the OM45-GFP background affected ROS and calcium homeostasis and delayed yeast PTP (yPTP) induction upon calcium treatment by modulating the dynamics of ATP synthase dimer/oligomer formation. The Om45 protein is a component of the porin complex, which is equivalent to mammalian VDAC. We aimed to investigate yPTP function in atp6-P163S and atp6-K90E mutants lacking the e and g dimerization subunits of ATP synthase.

METHODS

Triple mutants with the atp6-P163S or atp6-K90E mutation, the OM45-GFP gene and deletion of the TIM11 gene encoding subunit e were constructed by crossing and tetrad dissection. In spores capable of growing, the original atp6 mutations reverted to wild type, and two compensatory mutations, namely, atp6-C33S-T215C, were selected. The effects of these mutations on cellular physiology, mitochondrial morphology, bioenergetics and permeability transition (PT) were analyzed by fluorescence and electron microscopy, mitochondrial respiration, ATP synthase activity, calcium retention capacity and swelling assays.

RESULTS

The atp6-C33S-T215C mutations in the OM45-GFP background led to delayed growth at elevated temperature on both fermentative and respiratory media and increased sensitivity to high calcium ions concentration or hydrogen peroxide in the medium. The ATP synthase activity was reduced by approximately 50% and mitochondrial network was hyperfused in these cells grown at elevated temperature. The atp6-C33S-T215C stabilized ATP synthase dimers and restored the yPTP properties in Tim11∆ cells. In OM45-GFP cells, in which Tim11 is present, these mutations increased the fraction of swollen mitochondria by up to 85% vs 60% in the wild type, although the time required for calcium release doubled.

CONCLUSION

ATP synthase subunit e is essential in the S. cerevisiae atp6-P163S and atp6-K90E mutants. In addition to subunits e and g, subunit a is critical for yPTP induction and conduction. The increased yPTP conduction decrease the S. cerevisiae cell fitness.

摘要

背景/目的:线粒体ATP合酶除参与ATP合成外,还参与通透性转换孔(PTP)的形成,PTP形成先于哺乳动物细胞凋亡和酵母程序性细胞死亡。编码ATP合酶亚基的基因突变会导致神经肌肉疾病,并且已在癌症样本中被鉴定出来。PTP也与病理学有关。我们之前发现,在酿酒酵母中,OM45 - GFP背景下ATP合酶亚基a的两个突变(atp6 - P163S和atp6 - K90E,分别相当于在前列腺癌和甲状腺癌样本中检测到的突变)通过调节ATP合酶二聚体/寡聚体形成的动力学,影响活性氧(ROS)和钙稳态,并延迟钙处理后酵母PTP(yPTP)的诱导。Om45蛋白是孔蛋白复合物的一个组分,等同于哺乳动物的电压依赖性阴离子通道(VDAC)。我们旨在研究在缺乏ATP合酶的e和g二聚化亚基的atp6 - P163S和atp6 - K90E突变体中的yPTP功能。

方法

通过杂交和四分体剖析构建了具有atp6 - P163S或atp6 - K90E突变、OM45 - GFP基因以及编码亚基e的TIM11基因缺失的三重突变体。在能够生长的孢子中,原始的atp6突变回复为野生型,并选择了两个补偿性突变,即atp6 - C33S - T215C。通过荧光和电子显微镜、线粒体呼吸、ATP合酶活性、钙保留能力和肿胀试验分析了这些突变对细胞生理学、线粒体形态、生物能量学和通透性转换(PT)的影响。

结果

OM45 - GFP背景下的atp6 - C33S - T215C突变导致在发酵和呼吸培养基上高温下生长延迟,并且对培养基中高钙离子浓度或过氧化氢的敏感性增加。在这些高温下生长的细胞中,ATP合酶活性降低了约50%,线粒体网络过度融合。atp6 - C33S - T215C稳定了ATP合酶二聚体,并恢复了Tim11Δ细胞中的yPTP特性。在存在Tim11的OM45 - GFP细胞中,这些突变使肿胀线粒体的比例增加高达85%,而野生型为60%,尽管钙释放所需的时间加倍。

结论

ATP合酶亚基e在酿酒酵母的atp6 - P163S和atp6 - K90E突变体中至关重要。除了亚基e和g之外,亚基a对于yPTP的诱导和传导也至关重要。yPTP传导增加会降低酿酒酵母细胞的适应性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验