Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany.
Imperial College London, Department of Chemical Engineering, Exhibition Road, SW7 2AZ, London, United Kingdom.
Chempluschem. 2020 Feb;85(2):373-386. doi: 10.1002/cplu.202000025.
Full cost-effective exploitation of all wood components is key to growing a commercially successful biorefining industry. An innovative process is reported that combines fractionation of lignocellulosic biomass using a low-cost ionic liquid (Ionosolv) and production of bio-derived formic acid using polyoxometalates and molecular oxygen (OxFA process). We show that the hemicellulose and part of the lignin were selectively dissolved into the ionic liquid triethylammonium hydrogen sulfate and oxidised in situ to short-chain, distillable carboxylic acids by a Keggin-type polyoxometalate with high yields and selectivities. Characterization by several techniques, including ICP-OES, FTIR, GC, HPLC and NMR spectroscopy confirmed stability of the catalyst over three consecutive POM-Ionosolv recycles and stable formic acid yields.High formic acid yields of 26 % (pine chips), 23 % (beech chips), and 18 % (Miscanthus) were obtained with respect to the initial carbon content of the biomass, with unprecedented oxidation selectivities for formic acid of 54-62 % depending on vanadium substitution in the polyoxometalate, the processing temperature and the water content in the reaction mixture.. We also demonstrate that the cellulose rich pulp is a suitable source of glucose via enzymatic saccharification. We report cellulose yields of 37% for Miscanthus (from originally 48% glucan content), 33% for pine (from originally 49%) and 31% for beech (from originally 41%) were achieved, and a saccharification yield of up to 25% without optimisation. With further optimisation, this concept has the potential to generate two chemical products directly from lignocellulose in high yields and selectivities and hence a novel avenue for full utilisation of cellulose, hemicellulose and lignin.
充分有效地利用所有木质成分是发展商业上成功的生物炼制产业的关键。本文报道了一种创新工艺,该工艺结合了使用低成本离子液体(Ionosolv)对木质纤维素生物质进行分级分离以及使用多金属氧酸盐和分子氧(OxFA 工艺)生产生物衍生甲酸。我们表明,半纤维素和部分木质素被选择性地溶解到离子液体三乙基硫酸氢铵中,并通过具有高收率和选择性的 Keggin 型多金属氧酸盐原位氧化为短链、可蒸馏的羧酸。通过包括 ICP-OES、FTIR、GC、HPLC 和 NMR 光谱在内的多种技术对其进行的表征证实了催化剂在三个连续的 POM-Ionosolv 循环中的稳定性和稳定的甲酸产率。相对于生物质的初始碳含量,获得了 26%(松屑)、23%(山毛榉屑)和 18%(芒草)的高甲酸产率,根据多金属氧酸盐中的钒取代、处理温度和反应混合物中的含水量,甲酸的氧化选择性达到了前所未有的 54-62%。我们还证明了富含纤维素的纸浆是通过酶法糖化获得葡萄糖的合适原料。我们报道了芒草的纤维素收率为 37%(最初含有 48%的葡聚糖)、松木为 33%(最初含有 49%)、山毛榉为 31%(最初含有 41%),未经优化的糖化收率高达 25%。通过进一步优化,该概念有可能以高收率和选择性直接从木质纤维素中生产两种化学产品,从而为纤维素、半纤维素和木质素的充分利用提供了一条新途径。