Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
ACS Sens. 2020 Mar 27;5(3):719-730. doi: 10.1021/acssensors.9b01941. Epub 2020 Feb 26.
Genetically encoded Förster resonance energy transfer (FRET)-based biosensors have been developed for the visualization of signaling molecule activities. Currently, most of them are comprised of cyan and yellow fluorescent proteins (CFP and YFP), precluding the use of multiple FRET biosensors within a single cell. Moreover, the FRET biosensors based on CFP and YFP are incompatible with the optogenetic tools that operate at blue light. To overcome these problems, here, we have developed FRET biosensors with red-shifted excitation and emission wavelengths. We chose mKOκ and mKate2 as the favorable donor and acceptor pair by calculating the Förster distance. By optimizing the order of fluorescent proteins and modulatory domains of the FRET biosensors, we developed a FRET biosensor backbone named "Booster". The performance of the protein kinase A (PKA) biosensor based on the Booster backbone (Booster-PKA) was comparable to that of AKAR3EV, a previously developed FRET biosensor comprising CFP and YFP. For the proof of concept, we first showed simultaneous monitoring of activities of two protein kinases with Booster-PKA and ERK FRET biosensors based on CFP and YFP. Second, we showed monitoring of PKA activation by photoactivated adenylyl cyclase, an optogenetic generator of cyclic AMP. Finally, we presented PKA activity in living tissues of transgenic mice expressing Booster-PKA. Collectively, the results demonstrate the effectiveness and versatility of Booster biosensors as an imaging tool in vitro and in vivo.
基于Förster 共振能量转移(FRET)的基因编码生物传感器已被开发用于可视化信号分子活性。目前,它们大多数由青色和黄色荧光蛋白(CFP 和 YFP)组成,这使得在单个细胞内使用多个 FRET 生物传感器成为不可能。此外,基于 CFP 和 YFP 的 FRET 生物传感器与在蓝光下工作的光遗传学工具不兼容。为了克服这些问题,我们在这里开发了具有红移激发和发射波长的 FRET 生物传感器。我们通过计算 Förster 距离选择 mKOκ 和 mKate2 作为有利的供体和受体对。通过优化 FRET 生物传感器的荧光蛋白和调节域的顺序,我们开发了一种名为“Booster”的 FRET 生物传感器骨干。基于 Booster 骨干的蛋白激酶 A(PKA)生物传感器(Booster-PKA)的性能可与由 CFP 和 YFP 组成的先前开发的 FRET 生物传感器 AKAR3EV 相媲美。作为概念验证,我们首先展示了使用 Booster-PKA 和基于 CFP 和 YFP 的 ERK FRET 生物传感器同时监测两种蛋白激酶的活性。其次,我们展示了通过光激活环化腺苷酸酶(cAMP 的光遗传学发生器)监测 PKA 的激活。最后,我们展示了在表达 Booster-PKA 的转基因小鼠的活体组织中的 PKA 活性。总的来说,这些结果证明了 Booster 生物传感器作为体外和体内成像工具的有效性和多功能性。