Chan Siu-Chung, Ang Zhi Zhong, Gupta Puneet, Ganguly Rakesh, Li Yongxin, Ye Shengfa, England Jason
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 21 Nanyang Link, 637371, Singapore.
Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany.
Inorg Chem. 2020 Mar 16;59(6):4118-4128. doi: 10.1021/acs.inorgchem.0c00153. Epub 2020 Feb 26.
Carbodicarbenes (CDCs) possess two lone pairs of electrons on their central carbone C atom (C). Coordination to a transition metal via a σ bond leaves one pair of electrons with appropriate symmetry for π donation to the metal. However, the high energy of the latter also renders the CDC ligand potentially redox-active. Herein, we explore these alternatives in the redox series [Cr()] and [Co()] ( = 2-5), where is a tridentate ligand comprised of a central CDC and two flanking pyridine donors. To this end, all members of both redox series were synthesized and their electronic structures were investigated by using a combination of H NMR, Evans' NMR, IR, UV-vis, and EPR spectroscopies, SQUID magnetometry, X-ray crystallography, and density functional theory studies. Whereas [Co()] is a straightforward low-spin ( = /) cobalt(II) complex, the corresponding chromium complex was found to feature an electronic structure that is intermediate between the two limiting resonance forms [Cr()()] and [Cr()]. In the case of the tri-, tetra-, and pentacationic complexes, the qualitatively identical electronic structures [M()], [M()()], and [M()] were observed for both metals. Thus, the metal ions retain a 3+ oxidation state throughout, and the higher redox states contain oxidized ligands. The majority of the unpaired spin on the cation radical ligands was calculated to be localized in π-symmetry orbitals on the coordinated C atoms. Analogous behavior was previously reported for the corresponding iron redox series and, as such, redox noninnocence in oxidized CDC and, more broadly, carbone complexes is likely widely accessible.
碳二卡宾(CDC)在其中心碳原子(C)上有两对孤对电子。通过σ键与过渡金属配位后,会留下一对具有适当对称性的电子用于向金属进行π电子给予。然而,后者的高能量也使CDC配体具有潜在的氧化还原活性。在此,我们在氧化还原系列[Cr()]和[Co()](n = 2 - 5)中探索这些可能性,其中是由一个中心CDC和两个侧翼吡啶供体组成的三齿配体。为此,合成了这两个氧化还原系列的所有成员,并结合¹H NMR、埃文斯核磁共振、红外光谱、紫外可见光谱、电子顺磁共振光谱、超导量子干涉仪磁力测量、X射线晶体学和密度泛函理论研究对它们的电子结构进行了研究。虽然[Co()]是一个简单的低自旋(S = 1/2)钴(II)配合物,但发现相应的铬配合物具有介于两种极限共振形式[Cr()()]和[Cr()]之间的电子结构。对于三价、四价和五价阳离子配合物,两种金属都观察到了定性相同的电子结构[M()]、[M()()]和[M()]。因此,金属离子在整个过程中保持3 +氧化态,较高的氧化态包含氧化的配体。计算得出阳离子自由基配体上的大多数未成对自旋定域在配位C原子上的π对称轨道中。之前报道过相应铁氧化还原系列的类似行为,因此,氧化的CDC以及更广泛地说,碳烯配合物中的氧化还原非清白性可能很容易实现。