Suppr超能文献

反应性粗粒分子动力学。

Reactive Coarse-Grained Molecular Dynamics.

机构信息

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States.

出版信息

J Chem Theory Comput. 2020 Apr 14;16(4):2541-2549. doi: 10.1021/acs.jctc.9b01140. Epub 2020 Mar 10.

Abstract

Coarse-grained (CG) models have allowed for the study of long time and length scale properties of a variety of systems. However, when a system undergoes chemical reactions, current CG models are not able to capture this behavior because of their fixed bonding topology. In order to develop CG models capable of taking into account such chemical changes, a model must be able to adapt its bonding topology and CG site-site interactions to switch between multiple bonding structures (i.e., topologies). This challenge particularly impacts "bottom-up" CG models developed from the fundamental underlying atomistic-scale interactions. In this paper, a reactive coarse-grained (RCG) method is developed which utilizes all-atom (AA) data to create a CG model able to represent chemical reactions by undergoing changes in bonding topology. As an example, the RCG method was applied to a model of S2 reactions of 1-chlorobutane with a chloride ion and 1-iodobutane with an iodide ion in a methanol solvent. An asymmetric reaction was also modeled by incorporating a constant energy offset to the 1-iodobutane model. In each case, the calculated CG potential of mean force (PMF) results in good agreement with the fully AA PMF for the reactions.

摘要

粗粒化(CG)模型允许研究各种系统的长时间和长尺度特性。然而,当系统发生化学反应时,由于其固定的键拓扑结构,当前的 CG 模型无法捕捉到这种行为。为了开发能够考虑到这种化学变化的 CG 模型,模型必须能够适应其键拓扑结构和 CG 位-位相互作用,以在多种键结构(即拓扑结构)之间切换。这一挑战尤其影响到从基本原子尺度相互作用“自下而上”开发的 CG 模型。在本文中,开发了一种反应性粗粒化(RCG)方法,该方法利用全原子(AA)数据创建一个 CG 模型,通过改变键拓扑结构来表示化学反应。例如,该 RCG 方法应用于 1-氯丁烷与氯离子和 1-碘丁烷与碘离子在甲醇溶剂中的 S2 反应模型。通过对 1-碘丁烷模型施加恒定能量偏移,还模拟了不对称反应。在每种情况下,计算得到的 CG 平均力势(PMF)与反应的全 AA PMF 吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验