Suppr超能文献

基于图约束和协同表示分类器的判别投影及其在黄瓜病害早期识别中的应用

Graph Constraint and Collaborative Representation Classifier Steered Discriminative Projection with Applications for the Early Identification of Cucumber Diseases.

机构信息

College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.

出版信息

Sensors (Basel). 2020 Feb 23;20(4):1217. doi: 10.3390/s20041217.

Abstract

Accurate, rapid and non-destructive disease identification in the early stage of infection is essential to ensure the safe and efficient production of greenhouse cucumbers. Nevertheless, the effectiveness of most existing methods relies on the disease already exhibiting obvious symptoms in the middle to late stages of infection. Therefore, this paper presents an early identification method for cucumber diseases based on the techniques of hyperspectral imaging and machine learning, which consists of two procedures. First, reconstruction fidelity terms and graph constraints are constructed based on the decision criterion of the collaborative representation classifier and the desired spatial distribution of spectral curves (391 to 1044 nm) respectively. The former constrains the same-class and different-class reconstruction residuals while the latter constrains the weighted distances between spectral curves. They are further fused to steer the design of an offline algorithm. The algorithm aims to train a linear discriminative projection to transform the original spectral curves into a low dimensional space, where the projected spectral curves of different diseases own better separation trends. Then, the collaborative representation classifier is utilized to achieve online early diagnosis. Five experiments were performed on the hyperspectral data collected in the early infection stage of cucumber anthracnose and diseases. Experimental results demonstrated that the proposed method was feasible and effective, providing a maximal identification accuracy of 98.2% and an average online identification time of 0.65 ms. The proposed method has a promising future in practical production due to its high diagnostic accuracy and short diagnosis time.

摘要

准确、快速且无损的疾病识别对于确保温室黄瓜的安全高效生产至关重要。然而,大多数现有方法的有效性依赖于疾病在感染的中后期已经表现出明显的症状。因此,本文提出了一种基于高光谱成像和机器学习技术的黄瓜病害早期识别方法,该方法包括两个步骤。首先,基于协同表示分类器的决策准则和期望的光谱曲线(391 至 1044nm)的空间分布,分别构建了重构保真度项和图约束。前者约束了同类别和不同类别之间的重构残差,而后者则约束了光谱曲线之间的加权距离。然后将它们融合起来,以指导离线算法的设计。该算法旨在训练线性判别投影,将原始光谱曲线转换为低维空间,在该空间中,不同疾病的投影光谱曲线具有更好的分离趋势。然后,利用协同表示分类器实现在线早期诊断。在黄瓜炭疽病和其他病害早期感染阶段采集的高光谱数据上进行了五次实验。实验结果表明,所提出的方法是可行且有效的,最大识别准确率达到 98.2%,平均在线识别时间为 0.65ms。由于其高诊断准确性和短诊断时间,该方法在实际生产中具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1608/7070827/bad16aaa8dfd/sensors-20-01217-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验