Nciri Nader, Shin Taesub, Kim Namho, Caron Arnaud, Ben Ismail Hanen, Cho Namjun
School of Energy Materials⋅Chemical Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan, Chungnam 31253, Korea.
Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
Materials (Basel). 2020 Feb 23;13(4):1002. doi: 10.3390/ma13041002.
This article presents a novel potential bio-based rejuvenator derived from waste pig fat (WPF) for use in recycled asphalt applications. To achieve this purpose, the impact of different doses waste pig fat (e.g., 0, 3, 6, and 9 wt.% WPF) on the reclaimed asphalt pavement binder (RAP-B) performance is investigated. The unmodified and WPF-modified asphalts are characterized by means of Fourier-transform infrared spectroscopy (FT-IR), thin-layer chromatography-flame ionization detection (TLC-FID), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Physico-rheological properties of asphalt blends are assessed through Brookfield viscometer, softening point, penetration, and dynamic shear rheometer (DSR) tests. TLC-FID data highlighted that incremental WPF addition into RAP-B restored its original balance maltenes-to-asphaltenes ratio; finding which was supported by FT-IR analysis. SEM disclosed that WPF has a great compatibility with the aged asphalt. AFM observations showed that grease treatment induced a decline in surface roughness (i.e., bee structures) and a rise in friction force (i.e., para-phase dimension) of RAP binder. TGA/DSC studies revealed that the bio-modifier not only possesses an excellent thermal stability but also can substantially enhance the binder low-temperature performance. Empirical and DSR tests demonstrated that WPF improved the low-temperature performance grade of RAP-B, reduced its mixing and compaction temperatures, and noticeably boosted its fatigue cracking resistance. The rejuvenation of aged asphalt employing WPF is feasible and can be an ideal approach to recycle both of RAP and waste pig fats.
本文介绍了一种新型的潜在生物基再生剂,它源自废猪脂肪(WPF),用于再生沥青应用。为实现这一目的,研究了不同剂量的废猪脂肪(例如,0、3、6和9 wt.%的WPF)对再生沥青路面结合料(RAP-B)性能的影响。通过傅里叶变换红外光谱(FT-IR)、薄层色谱-火焰离子化检测(TLC-FID)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、热重分析(TGA)和差示扫描量热法(DSC)对未改性和WPF改性的沥青进行了表征。通过布鲁克菲尔德粘度计、软化点、针入度和动态剪切流变仪(DSR)试验评估了沥青混合料的物理流变性能。TLC-FID数据表明,向RAP-B中增量添加WPF可恢复其原始的软沥青与沥青质比例平衡;这一发现得到了FT-IR分析的支持。SEM表明WPF与老化沥青具有良好的相容性。AFM观察结果表明,油脂处理导致RAP结合料的表面粗糙度下降(即蜂状结构)和摩擦力上升(即副相尺寸)。TGA/DSC研究表明,这种生物改性剂不仅具有优异的热稳定性,而且能显著提高结合料的低温性能。经验试验和DSR试验表明,WPF提高了RAP-B的低温性能等级,降低了其混合和压实温度,并显著提高了其抗疲劳开裂性能。采用WPF对老化沥青进行再生是可行的,并且可以成为一种回收RAP和废猪脂肪的理想方法。