Herzberg O, James M N
Medical Research Council of Canada Group, University of Alberta, Edmonton.
J Mol Biol. 1988 Oct 5;203(3):761-79. doi: 10.1016/0022-2836(88)90208-2.
The crystal structure of troponin C from turkey skeletal muscle has been refined at 2.0 A resolution (1 A = 0.1 nm). The resulting crystallographic R factor (R = sigma[[Fo[-[Fc[[/sigma[Fo[, where [Fo[ and [Fc[ are the observed and calculated structure factor amplitudes) is 0.155 for the 8054 reflections with intensities I greater than or equal to 2 sigma(I) within the 10 A to 2.0 A resolution range. With 66% of the residues in helical conformation, troponin C provides a good sample for helix analysis. The mean alpha-helix dihedral angles (phi, psi = -62 degrees, -42 degrees) agree with values observed for helical regions in other proteins. The helices are all curved and/or kinked. In particular, the 31 amino acid long inter-domain helix is smoothly curved, with a rather large radius of curvature of 137 A. Helix packing is different in the Ca2+-free domain (N-terminal) and the Ca2+-bound domain (C-terminal). The inter-helix angles for the two helix-loop-helix motifs in the regulatory domain are 133 degrees and 151 degrees, whereas the value for the two motifs in the C-terminal domain is 110 degrees, as observed in the EF-hands of parvalbumin. These differences affect the packing of the respective hydrophobic cores of each domain, in particular the disposition of aromatic rings. Pairwise arrangement of Ca2+-binding loops is common to both states, but the conformation is markedly different. Conversion of one to the other can be achieved by small cumulative changes of main-chain dihedral angles. The integrity of loop structure is maintained by numerous electrostatic interactions. Both salt bridges and carboxyl-carboxylate interactions are observed in TnC. There are more intramolecular (9) than intermolecular (1) salt bridges. Carboxyl-carboxylate interactions occur because the pH of the crystals is 5.0 and there is a multitude of aspartate and glutamate residues. One is intramolecular and four are intermolecular. Polar side-chain interactions occur more commonly with main-chain carbonyls and amides than with other polar side-chains. These interactions are mostly short range, and are similar to those observed in other proteins with one exception: negatively charged side-chains interact more frequently with main-chain carbonyl oxygen atoms. However, out of 19 such interactions, 10 involve oxygen atoms of the Ca2+ ligands. These unfavorable interactions are compensated by the favorable interactions with the Ca2+ ions and with main-chain amides. They are a trivial consequence of the tight fold of the Ca2+-binding loops.
火鸡骨骼肌肌钙蛋白C的晶体结构已在2.0埃分辨率(1埃 = 0.1纳米)下进行了精修。对于10埃至2.0埃分辨率范围内强度I大于或等于2σ(I)的8054个反射,所得晶体学R因子(R = σ[[Fo[-[Fc[[/σ[Fo[,其中[Fo[和[Fc[分别为观测和计算得到的结构因子振幅)为0.155。肌钙蛋白C中66%的残基处于螺旋构象,为螺旋分析提供了一个很好的样本。平均α-螺旋二面角(φ,ψ = -62°,-42°)与其他蛋白质螺旋区域观测到的值相符。这些螺旋均为弯曲和/或扭结状。特别是,31个氨基酸长的结构域间螺旋呈平滑弯曲,曲率半径相当大,为137埃。无Ca2+结构域(N端)和结合Ca2+结构域(C端)的螺旋堆积不同。调节结构域中两个螺旋-环-螺旋基序的螺旋间角度为133°和151°,而C端结构域中两个基序的角度为110°,如在小白蛋白的EF手结构中所观测到的。这些差异影响了每个结构域各自疏水核心的堆积,特别是芳香环的排布。Ca2+结合环的成对排列在两种状态下都很常见,但构象明显不同。通过主链二面角的微小累积变化可实现一种构象向另一种构象的转变。环结构的完整性通过众多静电相互作用得以维持。在肌钙蛋白C中观察到了盐桥和羧基-羧酸盐相互作用。分子内盐桥(9个)比分子间盐桥(1个)更多。羧基-羧酸盐相互作用的发生是因为晶体的pH值为5.0,且存在大量天冬氨酸和谷氨酸残基。其中一个是分子内的,四个是分子间的。极性侧链相互作用更常见于与主链羰基和酰胺,而非与其他极性侧链。这些相互作用大多是短程的,与其他蛋白质中观察到的类似,但有一个例外:带负电荷的侧链更频繁地与主链羰基氧原子相互作用。然而,在19个这样的相互作用中,有10个涉及Ca2+配体的氧原子。这些不利的相互作用通过与Ca2+离子和主链酰胺的有利相互作用得到补偿。它们是Ca2+结合环紧密折叠的一个微不足道的结果。