Hobisch Mathias Andreas, Phiri Josphat, Dou Jinze, Gane Patrick, Vuorinen Tapani, Bauer Wolfgang, Prehal Christian, Maloney Thaddeus, Spirk Stefan
Institute of Paper, Pulp and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland.
Materials (Basel). 2020 Feb 24;13(4):1016. doi: 10.3390/ma13041016.
Willow bark is a byproduct from forestry and is obtained at an industrial scale. We upcycled this byproduct in a two-step procedure into sustainable electrode materials for symmetrical supercapacitors using organic electrolytes. The procedure employed precarbonization followed by carbonization using different types of KOH activation protocols. The obtained electrode materials had a hierarchically organized pore structure and featured a high specific surface area (>2500 m g) and pore volume (up to 1.48 cm g). The assembled supercapacitors exhibited capacitances up to 147 F g in organic electrolytes concomitant with excellent cycling performance over 10,000 cycles at 0.6 A g using coin cells. The best materials exhibited a capacity retention of 75% when changing scan rates from 2 to 100 mV s.
柳树皮是林业副产品,可在工业规模上获取。我们通过两步法将这种副产品升级转化为用于使用有机电解质的对称超级电容器的可持续电极材料。该方法采用预碳化,然后使用不同类型的KOH活化方案进行碳化。所获得的电极材料具有分层组织的孔隙结构,具有高比表面积(>2500 m g)和孔体积(高达1.48 cm g)。组装的超级电容器在有机电解质中表现出高达147 F g的电容,使用扣式电池在0.6 A g下循环10000次具有优异的循环性能。当扫描速率从2 mV s变为100 mV s时,最佳材料的容量保持率为75%。