Suppr超能文献

用于可持续储能系统的柳树皮。

Willow Bark for Sustainable Energy Storage Systems.

作者信息

Hobisch Mathias Andreas, Phiri Josphat, Dou Jinze, Gane Patrick, Vuorinen Tapani, Bauer Wolfgang, Prehal Christian, Maloney Thaddeus, Spirk Stefan

机构信息

Institute of Paper, Pulp and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.

Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, 02150 Espoo, Finland.

出版信息

Materials (Basel). 2020 Feb 24;13(4):1016. doi: 10.3390/ma13041016.

Abstract

Willow bark is a byproduct from forestry and is obtained at an industrial scale. We upcycled this byproduct in a two-step procedure into sustainable electrode materials for symmetrical supercapacitors using organic electrolytes. The procedure employed precarbonization followed by carbonization using different types of KOH activation protocols. The obtained electrode materials had a hierarchically organized pore structure and featured a high specific surface area (>2500 m g) and pore volume (up to 1.48 cm g). The assembled supercapacitors exhibited capacitances up to 147 F g in organic electrolytes concomitant with excellent cycling performance over 10,000 cycles at 0.6 A g using coin cells. The best materials exhibited a capacity retention of 75% when changing scan rates from 2 to 100 mV s.

摘要

柳树皮是林业副产品,可在工业规模上获取。我们通过两步法将这种副产品升级转化为用于使用有机电解质的对称超级电容器的可持续电极材料。该方法采用预碳化,然后使用不同类型的KOH活化方案进行碳化。所获得的电极材料具有分层组织的孔隙结构,具有高比表面积(>2500 m g)和孔体积(高达1.48 cm g)。组装的超级电容器在有机电解质中表现出高达147 F g的电容,使用扣式电池在0.6 A g下循环10000次具有优异的循环性能。当扫描速率从2 mV s变为100 mV s时,最佳材料的容量保持率为75%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7650/7078613/eb08632dd49b/materials-13-01016-g001.jpg

相似文献

1
Willow Bark for Sustainable Energy Storage Systems.
Materials (Basel). 2020 Feb 24;13(4):1016. doi: 10.3390/ma13041016.
2
Highly Porous Willow Wood-Derived Activated Carbon for High-Performance Supercapacitor Electrodes.
ACS Omega. 2019 Oct 22;4(19):18108-18117. doi: 10.1021/acsomega.9b01977. eCollection 2019 Nov 5.
5
Mesoporous Carbons Templated by PEO-PCL Block Copolymers as Electrode Materials for Supercapacitors.
Chemistry. 2019 Aug 6;25(44):10456-10463. doi: 10.1002/chem.201901724. Epub 2019 Jul 8.
6
Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes.
ACS Appl Mater Interfaces. 2017 Dec 13;9(49):42797-42805. doi: 10.1021/acsami.7b14390. Epub 2017 Dec 4.
7
Facile Synthesis of Mixed Metal-Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability.
ACS Appl Mater Interfaces. 2018 Jul 11;10(27):23063-23073. doi: 10.1021/acsami.8b04502. Epub 2018 Jun 29.
9
High Specific Capacitance Electrode Material for Supercapacitors Based on Resin-Derived Nitrogen-Doped Porous Carbons.
ACS Omega. 2019 Sep 19;4(14):15904-15911. doi: 10.1021/acsomega.9b01916. eCollection 2019 Oct 1.
10
Ammonium Nitrate-Assisted Synthesis of Nitrogen/Sulfur-Codoped Hierarchically Porous Carbons Derived from Ginkgo Leaf for Supercapacitors.
ACS Omega. 2019 Mar 27;4(3):5904-5914. doi: 10.1021/acsomega.8b03586. eCollection 2019 Mar 31.

本文引用的文献

1
Highly Porous Willow Wood-Derived Activated Carbon for High-Performance Supercapacitor Electrodes.
ACS Omega. 2019 Oct 22;4(19):18108-18117. doi: 10.1021/acsomega.9b01977. eCollection 2019 Nov 5.
3
Carbons and electrolytes for advanced supercapacitors.
Adv Mater. 2014 Apr 9;26(14):2219-51, 2283. doi: 10.1002/adma.201304137. Epub 2014 Feb 3.
4
Materials science. True performance metrics in electrochemical energy storage.
Science. 2011 Nov 18;334(6058):917-8. doi: 10.1126/science.1213003.
5
Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions.
Bioresour Technol. 2003 Sep;89(3):307-11. doi: 10.1016/s0960-8524(03)00059-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验