Suppr超能文献

用于先进超级电容器的碳材料和电解液。

Carbons and electrolytes for advanced supercapacitors.

机构信息

Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Piotrowo 3, 60-965, Poznan, Poland.

出版信息

Adv Mater. 2014 Apr 9;26(14):2219-51, 2283. doi: 10.1002/adma.201304137. Epub 2014 Feb 3.

Abstract

Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.

摘要

电能存储(EES)是全球技术研究中最关键的领域之一。存储和有效利用间歇性来源产生的电力以及我们的运输车队向电动驱动的过渡,从根本上取决于开发具有高能量和功率密度的 EES 系统。超级电容器是高效储能和功率管理的有前途的设备,但与电池相比,其能量密度仍然适中。为了建立对碳/碳超级电容器科学和技术的详细理解,本综述讨论了双电层(EDL)的基本原理,特别是关于离子大小/离子溶剂化与多孔碳电极的孔径之间的相关性。我们总结了用于超级电容器的各种碳材料的合成的关键方面。为了提高能量密度,最后两个部分致力于通过引入赝电容材料或使用允许增加电池电压的新型电解质来增加电容的策略。特别是,讨论了离子液体的进展,以及有机电解质领域的进展,并扩展了电极质量平衡,因为它对于创建更高性能的非对称电化学电容器非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验