Suppr超能文献

一种使用多目标遗传算法II优化薄膜复合反渗透膜制备条件的新方法。

A Novel Approach To Optimize the Fabrication Conditions of Thin Film Composite RO Membranes Using Multi-Objective Genetic Algorithm II.

作者信息

Ali Fekri Abdulraqeb Ahmed, Alam Javed, Shukla Arun Kumar, Alhoshan Mansour, M A Abdo Basem, Al-Masry Waheed A

机构信息

Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box-2455, Riyadh-11451, Saudi Arabia.

King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box- 2455, Riyadh 11451, Saudi Arabia.

出版信息

Polymers (Basel). 2020 Feb 24;12(2):494. doi: 10.3390/polym12020494.

Abstract

This work focuses on developing a novel method to optimize the fabrication conditions of polyamide (PA) thin film composite (TFC) membranes using the multi-objective genetic algorithm II (MOGA-II) method. We used different fabrication conditions for formation of polyamide layer-trimesoyl chloride (TMC) concentration, reaction time (t), and curing temperature (Tc)-at different levels, and designed the experiment using the factorial design method. Three functions (polynomial, neural network, and radial basis) were used to generate the response surface model (RSM). The results showed that the radial basis predicted good results (R = 1) and was selected to generate the RSM that was used as the solver for MOGA-II. The experimental results indicate that TMC concentration and t have the highest influence on water flux, while NaCl rejection is mainly affected by the TMC concentration, t, and Tc. Moreover, the TMC concentration controls the density of the PA, whereas t confers the PA layer thickness. In the optimization run, MOGA-II was used to determine optimal parametric conditions for maximizing water flux and NaCl rejection with constraints on the maximum acceptable levels of NaSO, MgSO, and MgCl rejections. The optimized solutions were obtained for longer t, higher Tc, and different TMC concentration levels.

摘要

这项工作着重于开发一种新颖的方法,使用多目标遗传算法II(MOGA-II)来优化聚酰胺(PA)薄膜复合(TFC)膜的制备条件。我们在不同水平下使用不同的制备条件来形成聚酰胺层——均苯三甲酰氯(TMC)浓度、反应时间(t)和固化温度(Tc),并采用析因设计方法设计实验。使用了三个函数(多项式、神经网络和径向基函数)来生成响应面模型(RSM)。结果表明,径向基函数预测效果良好(R = 1),并被选来生成用作MOGA-II求解器的RSM。实验结果表明,TMC浓度和t对水通量影响最大,而NaCl截留率主要受TMC浓度、t和Tc的影响。此外,TMC浓度控制PA的密度,而t决定PA层的厚度。在优化过程中,MOGA-II用于确定最佳参数条件,以在对NaSO、MgSO和MgCl截留率的最大可接受水平的约束下最大化水通量和NaCl截留率。针对更长的t、更高的Tc以及不同的TMC浓度水平获得了优化解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a43/7077664/b0b6dfe97c2e/polymers-12-00494-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验