Creazzo Fabrizio, Pezzotti Simone, Bougueroua Sana, Serva Alessandra, Sponer Jiri, Saija Franz, Cassone Giuseppe, Gaigeot Marie-Pierre
LAMBE UMR8587, Univ Evry, Université Paris-Saclay, CNRS, 91025 Evry, France.
Phys Chem Chem Phys. 2020 May 21;22(19):10438-10446. doi: 10.1039/c9cp06970d. Epub 2020 Feb 27.
DFT-based molecular dynamics simulations of the electrified air-liquid water interface are presented, where a homogeneous field is applied parallel to the surface plane. We unveil the field intensity for the onset of proton transfer and molecular dissociation; the protonic current/proton conductivity is measured as a function of the field intensity/voltage. The air-water interface is shown to exhibit a proton conductivity twice the one in the liquid water for field intensities below 0.40 V Å. We show that this difference arises from the very specific organization of water in the binding interfacial layer (BIL, i.e. the air-water interface region) into a 2D-HBond-network that is maintained and enforced at the electrified interface. Beyond fields of 0.40 V Å, water in the BIL and in the bulk liquid are aligned in the same way by the rather intense fields, hence leading to the same proton conductivity in both BIL and bulk water.
本文展示了基于密度泛函理论(DFT)的带电气-液水界面分子动力学模拟,其中平行于表面平面施加均匀场。我们揭示了质子转移和分子解离开始时的场强;测量了质子电流/质子电导率作为场强/电压的函数。结果表明,对于场强低于0.40 V Å的情况,气-水界面的质子电导率是液态水中的两倍。我们表明,这种差异源于结合界面层(BIL,即气-水界面区域)中水分子非常特殊的排列方式,形成了二维氢键网络,该网络在带电界面处得以维持和强化。超过0.40 V Å的场强后,BIL中的水和本体液体中的水会以相同的方式被相当强的场排列,因此导致BIL和本体水中的质子电导率相同。