Halama Ralf, Konrad-Schmolke Matthias, De Hoog Jan C M
1School of Geography, Geology and the Environment, Keele University, Keele, ST5 5BG UK.
2Department of Earth Sciences, University of Gothenburg, Guldhedsgatan 5a, 41320 Gothenburg, Sweden.
Contrib Mineral Petrol. 2020;175(3):20. doi: 10.1007/s00410-020-1661-8. Epub 2020 Feb 6.
This study presents boron (B) concentration and isotope data for white mica from (ultra)high-pressure (UHP), subduction-related metamorphic rocks from Lago di Cignana (Western Alps, Italy). These rocks are of specific geological interest, because they comprise the most deeply subducted rocks of oceanic origin worldwide. Boron geochemistry can track fluid-rock interaction during their metamorphic evolution and provide important insights into mass transfer processes in subduction zones. The highest B contents (up to 345 μg/g B) occur in peak metamorphic phengite from a garnet-phengite quartzite. The B isotopic composition is variable (δB = - 10.3 to - 3.6%) and correlates positively with B concentrations. Based on similar textures and major element mica composition, neither textural differences, prograde growth zoning, diffusion nor a retrograde overprint can explain this correlation. Modelling shows that B devolatilization during metamorphism can explain the general trend, but fails to account for the wide compositional and isotopic variability in a single, well-equilibrated sample. We, therefore, argue that this trend represents fluid-rock interaction during peak metamorphic conditions. This interpretation is supported by fluid-rock interaction modelling of boron leaching and boron addition that can successfully reproduce the observed spread in δB and [B]. Taking into account the local availability of serpentinites as potential source rocks of the fluids, the temperatures reached during peak metamorphism that allow for serpentine dehydration, and the high positive δB values (δB = 20 ± 5) modelled for the fluids, an influx of serpentinite-derived fluid appears likely. Paragonite in lawsonite pseudomorphs in an eclogite and phengite from a retrogressed metabasite have B contents between 12 and 68 μg/g and δB values that cluster around 0% (δB = - 5.0 to + 3.5). White mica in both samples is related to distinct stages of retrograde metamorphism during exhumation of the rocks. The variable B geochemistry can be successfully modelled as fluid-rock interaction with low-to-moderate (< 3) fluid/rock ratios, where mica equilibrates with a fluid into which B preferentially partitions, causing leaching of B from the rock. The metamorphic rocks from Lago di Cignana show variable retention of B in white mica during subduction-related metamorphism and exhumation. The variability in the B geochemical signature in white mica is significant and enhances our understanding of metamorphic processes and their role in element transfer in subduction zones.
本研究展示了来自意大利西部阿尔卑斯山奇尼亚纳湖(Lago di Cignana)的(超)高压、与俯冲作用相关的变质岩中白云母的硼(B)浓度和同位素数据。这些岩石具有特殊的地质意义,因为它们包含了全球范围内俯冲最深的大洋起源岩石。硼地球化学可以追踪其变质演化过程中的流体 - 岩石相互作用,并为俯冲带的质量转移过程提供重要见解。石榴石 - 多硅白云母石英岩中峰值变质阶段的多硅白云母具有最高的B含量(高达345μg/g B)。B同位素组成变化较大(δB = -10.3%至 -3.6%),且与B浓度呈正相关。基于相似的结构和主要元素云母组成,结构差异、进变质生长分带、扩散或退变质叠加均无法解释这种相关性。模拟结果表明,变质过程中的B脱挥发作用可以解释总体趋势,但无法解释单个平衡良好的样品中广泛的成分和同位素变异性。因此,我们认为这种趋势代表了峰值变质条件下的流体 - 岩石相互作用。硼浸出和硼添加的流体 - 岩石相互作用模拟能够成功再现观测到的δB和[B]的变化范围,这支持了上述解释。考虑到蛇纹岩作为流体潜在源岩的局部可用性、峰值变质期间达到的允许蛇纹石脱水的温度以及模拟得到的流体的高正δB值(δB = 20 ± 5),似乎很可能有来自蛇纹岩的流体流入。榴辉岩中硬柱石假象中的钠云母以及退变变质基性岩中的多硅白云母的B含量在12至68μg/g之间,δB值集中在0%左右(δB = -5.0%至 +3.5%)。这两个样品中的白云母都与岩石折返过程中不同阶段的退变质作用有关。可变的B地球化学可以成功地模拟为流体 - 岩石相互作用,流体/岩石比低至中等(<3),云母与B优先分配进入的流体达到平衡,导致B从岩石中浸出。奇尼亚纳湖的变质岩在与俯冲作用相关的变质作用和折返过程中,白云母对B的保留情况各不相同。白云母中B地球化学特征的变异性很显著,这增进了我们对变质过程及其在俯冲带元素转移中作用的理解。