Suppr超能文献

具有库仑成本的无限体最优传输

Infinite-body optimal transport with Coulomb cost.

作者信息

Cotar Codina, Friesecke Gero, Pass Brendan

机构信息

1Department of Statistical Science, University College London, London, UK.

2Department of Mathematics, Technische Universität München, Munich, Germany.

出版信息

Calc Var Partial Differ Equ. 2015;54(1):717-742. doi: 10.1007/s00526-014-0803-0. Epub 2014 Dec 17.

Abstract

We introduce and analyze symmetric infinite-body optimal transport (OT) problems with cost function of pair potential form. We show that for a natural class of such costs, the optimizer is given by the independent product measure all of whose factors are given by the one-body marginal. This is in striking contrast to standard finite-body OT problems, in which the optimizers are typically highly correlated, as well as to infinite-body OT problems with Gangbo-Swiech cost. Moreover, by adapting a construction from the study of exchangeable processes in probability theory, we prove that the corresponding -body OT problem is well approximated by the infinite-body problem. To our class belongs the Coulomb cost which arises in many-electron quantum mechanics. The optimal cost of the Coulombic N-body OT problem as a function of the one-body marginal density is known in the physics and quantum chemistry literature under the name , and arises naturally as the semiclassical limit of the celebrated Hohenberg-Kohn functional. Our results imply that in the inhomogeneous high-density limit (i.e. with arbitrary fixed inhomogeneity profile ), the SCE functional converges to the mean field functional. We also present reformulations of the infinite-body and N-body OT problems as two-body OT problems with representability constraints.

摘要

我们引入并分析具有对势形式成本函数的对称无限体最优传输(OT)问题。我们表明,对于这类成本的一个自然类别,优化器由独立乘积测度给出,其所有因子均由单体边缘分布给出。这与标准的有限体OT问题形成鲜明对比,在有限体OT问题中优化器通常高度相关,也与具有Gangbo - Swiech成本的无限体OT问题不同。此外,通过采用概率论中可交换过程研究的一种构造,我们证明相应的N体OT问题可以由无限体问题很好地近似。我们的类别包括多电子量子力学中出现的库仑成本。在物理和量子化学文献中,库仑N体OT问题的最优成本作为单体边缘密度的函数以SCE的名称为人所知,并且作为著名的 Hohenberg - Kohn泛函的半经典极限自然出现。我们的结果意味着在非均匀高密度极限(即具有任意固定非均匀性分布的情况下),SCE泛函收敛到平均场泛函。我们还将无限体和N体OT问题重新表述为具有可表示性约束的两体OT问题。

相似文献

1
Infinite-body optimal transport with Coulomb cost.具有库仑成本的无限体最优传输
Calc Var Partial Differ Equ. 2015;54(1):717-742. doi: 10.1007/s00526-014-0803-0. Epub 2014 Dec 17.
8
Optimal transport at finite temperature.有限温度下的最优输运。
Phys Rev E. 2019 Jul;100(1-1):013310. doi: 10.1103/PhysRevE.100.013310.
9
Entropic Density Functional Theory.熵密度泛函理论
Entropy (Basel). 2023 Dec 21;26(1):10. doi: 10.3390/e26010010.
10
Physics approach to the variable-mass optimal-transport problem.
Phys Rev E. 2021 Jan;103(1-1):012113. doi: 10.1103/PhysRevE.103.012113.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验