Suppr超能文献

用于遥感图像目标检测的3D姿态估计

3D Pose Estimation for Object Detection in Remote Sensing Images.

作者信息

Liu Jin, Gao Yongjian

机构信息

State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China.

出版信息

Sensors (Basel). 2020 Feb 25;20(5):1240. doi: 10.3390/s20051240.

Abstract

3D pose estimation is always an active but challenging task for object detection in remote sensing images. In this paper, we present a new algorithm for predicting an object's 3D pose in remote sensing images, called Anchor Points Prediction (APP). Compared to previous methods, such as RoI Transform, our object results of the final output can obtain direction information. We predict the object's multiple feature points based on the neural network to obtain the homograph transformation relationship between object coordinates and image coordinates. The resulting 3D pose can accurately describe the three-dimensional position and attitude of the object. At the same time, we redefine the method I o U A P P for calculating the direction and posture of the object. We tested our algorithm on the HRSC2016 dataset and the DOTA dataset with accuracy rates of 0.863 and 0.701, respectively. The experimental results show that the accuracy of the APP algorithm is significantly improved. At the same time, the algorithm can achieve one-stage prediction, which makes the calculation process easier and more efficient.

摘要

对于遥感图像中的目标检测,三维姿态估计一直是一项活跃但具有挑战性的任务。在本文中,我们提出了一种用于预测遥感图像中物体三维姿态的新算法,称为锚点预测(APP)。与之前的方法(如RoI变换)相比,我们最终输出的目标结果可以获得方向信息。我们基于神经网络预测物体的多个特征点,以获得物体坐标与图像坐标之间的单应变换关系。得到的三维姿态可以准确描述物体的三维位置和姿态。同时,我们重新定义了用于计算物体方向和姿态的IoU APP方法。我们在HRSC2016数据集和DOTA数据集上测试了我们的算法,准确率分别为0.863和0.701。实验结果表明,APP算法的准确率有显著提高。同时,该算法可以实现单阶段预测,这使得计算过程更加简单高效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f0/7085726/da2ad1b57f3f/sensors-20-01240-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验