Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
The Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.
Nat Commun. 2020 Feb 27;11(1):1087. doi: 10.1038/s41467-020-14897-7.
Sound localization plays a critical role in animal survival. Three cues can be used to compute sound direction: interaural timing differences (ITDs), interaural level differences (ILDs) and the direction-dependent spectral filtering by the head and pinnae (spectral cues). Little is known about how spectral cues contribute to the neural encoding of auditory space. Here we report on auditory space encoding in the mouse superior colliculus (SC). We show that the mouse SC contains neurons with spatially-restricted receptive fields (RFs) that form an azimuthal topographic map. We found that frontal RFs require spectral cues and lateral RFs require ILDs. The neurons with frontal RFs have frequency tunings that match the spectral structure of the specific head and pinna filter for sound coming from the front. These results demonstrate that patterned spectral cues in combination with ILDs give rise to the topographic map of azimuthal auditory space.
声音定位在动物生存中起着至关重要的作用。有三个线索可用于计算声音方向:两耳时间差(ITD)、两耳强度差(ILD)和头部和耳廓的方向相关频谱滤波(频谱线索)。关于频谱线索如何有助于听觉空间的神经编码,我们知之甚少。在这里,我们报告了在小鼠上丘(SC)中的听觉空间编码。我们表明,小鼠 SC 包含具有空间限制的感受野(RFs)的神经元,形成方位拓扑图。我们发现,额侧 RFs 需要频谱线索,而外侧 RFs 需要 ILD。具有额侧 RFs 的神经元的频率调谐与来自前方的声音的特定头部和耳廓滤波器的频谱结构相匹配。这些结果表明,有模式的频谱线索与 ILD 相结合,产生了方位听觉空间的拓扑图。