Suppr超能文献

评估 SAMPL6 第 II 部分 log P 挑战中辛醇-水分配系数预测的准确性。

Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge.

机构信息

Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA.

出版信息

J Comput Aided Mol Des. 2020 Apr;34(4):335-370. doi: 10.1007/s10822-020-00295-0. Epub 2020 Feb 27.

Abstract

The SAMPL Challenges aim to focus the biomolecular and physical modeling community on issues that limit the accuracy of predictive modeling of protein-ligand binding for rational drug design. In the SAMPL5 log D Challenge, designed to benchmark the accuracy of methods for predicting drug-like small molecule transfer free energies from aqueous to nonpolar phases, participants found it difficult to make accurate predictions due to the complexity of protonation state issues. In the SAMPL6 log P Challenge, we asked participants to make blind predictions of the octanol-water partition coefficients of neutral species of 11 compounds and assessed how well these methods performed absent the complication of protonation state effects. This challenge builds on the SAMPL6 p[Formula: see text] Challenge, which asked participants to predict p[Formula: see text] values of a superset of the compounds considered in this log P challenge. Blind prediction sets of 91 prediction methods were collected from 27 research groups, spanning a variety of quantum mechanics (QM) or molecular mechanics (MM)-based physical methods, knowledge-based empirical methods, and mixed approaches. There was a 50% increase in the number of participating groups and a 20% increase in the number of submissions compared to the SAMPL5 log D Challenge. Overall, the accuracy of octanol-water log P predictions in SAMPL6 Challenge was higher than cyclohexane-water log D predictions in SAMPL5, likely because modeling only the neutral species was necessary for log P and several categories of method benefited from the vast amounts of experimental octanol-water log P data. There were many highly accurate methods: 10 diverse methods achieved RMSE less than 0.5 log P units. These included QM-based methods, empirical methods, and mixed methods with physical modeling supported with empirical corrections. A comparison of physical modeling methods showed that QM-based methods outperformed MM-based methods. The average RMSE of the most accurate five MM-based, QM-based, empirical, and mixed approach methods based on RMSE were 0.92 ± 0.13, 0.48 ± 0.06, 0.47 ± 0.05, and 0.50 ± 0.06, respectively.

摘要

SAMPL 挑战赛旨在将生物分子和物理建模界的注意力集中在限制蛋白质 - 配体结合预测性建模用于合理药物设计的准确性的问题上。在 SAMPL5logD 挑战赛中,旨在基准预测从水相到非极性相的药物样小分子转移自由能的方法的准确性,由于质子化状态问题的复杂性,参与者发现难以进行准确的预测。在 SAMPL6logP 挑战赛中,我们要求参与者对 11 种化合物的中性物种的辛醇 - 水分配系数进行盲目预测,并评估这些方法在没有质子化状态效应的复杂性的情况下表现如何。这项挑战是基于 SAMPL6pKa 挑战赛,要求参与者预测此 logP 挑战赛中考虑的化合物超集的 pKa 值。从 27 个研究小组中收集了 91 种预测方法的盲测集,涵盖了各种量子力学(QM)或基于分子力学(MM)的物理方法、基于知识的经验方法和混合方法。与 SAMPL5logD 挑战赛相比,参与小组的数量增加了 50%,提交的数量增加了 20%。总体而言,SAMPL6 挑战赛中辛醇 - 水 logP 预测的准确性高于 SAMPL5 中环己烷 - 水 logD 预测,这可能是因为仅对中性物种进行建模对于 logP 是必要的,并且几种方法类别受益于大量的实验辛醇 - 水 logP 数据。有许多高度准确的方法:10 种不同的方法实现了小于 0.5 logP 单位的 RMSE。这些方法包括基于 QM 的方法、经验方法和混合方法,这些方法使用经验校正支持物理建模。对物理建模方法的比较表明,基于 QM 的方法优于基于 MM 的方法。基于 RMSE 的最准确的五个 MM 基于、QM 基于、经验和混合方法的平均 RMSE 分别为 0.92±0.13、0.48±0.06、0.47±0.05 和 0.50±0.06。

相似文献

2
Octanol-water partition coefficient measurements for the SAMPL6 blind prediction challenge.辛醇-水分配系数测量 SAMPL6 盲测挑战。
J Comput Aided Mol Des. 2020 Apr;34(4):405-420. doi: 10.1007/s10822-019-00271-3. Epub 2019 Dec 19.
9
Evaluation of log P, pK, and log D predictions from the SAMPL7 blind challenge.SAMPL7 盲测中预测 log P、pK 和 log D 的评估。
J Comput Aided Mol Des. 2021 Jul;35(7):771-802. doi: 10.1007/s10822-021-00397-3. Epub 2021 Jun 24.

引用本文的文献

6
Adaptation of Empirical Methods to Predict the LogD of Triazine Macrocycles.用于预测三嗪大环化合物logD的经验方法的适应性
ACS Med Chem Lett. 2023 Sep 8;14(10):1378-1382. doi: 10.1021/acsmedchemlett.3c00290. eCollection 2023 Oct 12.

本文引用的文献

3
SAMPL6 logP challenge: machine learning and quantum mechanical approaches.SAMPL6 logP 挑战:机器学习与量子力学方法。
J Comput Aided Mol Des. 2020 May;34(5):495-510. doi: 10.1007/s10822-020-00287-0. Epub 2020 Jan 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验