Wu Wu-Qiang, Chen Dehong, Cheng Yi-Bing, Caruso Rachel A
Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia.
Applied Chemistry and Environmental Science, RMIT University, Melbourne, Victoria 3000, Australia.
ACS Appl Mater Interfaces. 2020 Mar 11;12(10):11450-11458. doi: 10.1021/acsami.9b19041. Epub 2020 Feb 28.
The development of solution-processed inorganic amorphous electron-transporting layers (ETLs) is important for the future commercialization of perovskite solar cells (PSCs). The formation of such ETLs using low-temperature processing techniques will lower potential production costs and accommodate diverse substrate materials. Herein, a low-temperature (<150 °C) solution process forms amorphous titania nanowire (Am-TNW) thin films on fluorine-doped tin oxide conducting glass substrates. When applied as an ETL in PSCs, the Am-TNW layer achieves a higher average power conversion efficiency (18.3%) relative to that of a nanocrystalline anatase TNW (ATNW) layer obtained after high-temperature (500 °C) heating (16.7%). Compared to the ATNW counterparts, the Am-TNW-based PSCs exhibit inferior charge extraction across the TNW/CHNHPbI interface but more effectively suppress interfacial charge recombination. The insertion of a fullerene layer between the Am-TNW and CHNHPbI improves the charge extraction. The Am-TNW-based bilayer ETL gave optimal power conversion efficiencies of 20.3% and 19.0% for PSCs with 0.16 cm and 1.00 cm apertures, respectively. This is due to the concurrent advantages of enhanced light absorption, facilitated charge extraction, and reduced charge recombination. The use of the Am-TNW as an ETL in PSCs provides a facile, efficient way to increase the effectiveness of PSCs.
溶液法制备无机非晶电子传输层(ETL)对于钙钛矿太阳能电池(PSC)的未来商业化发展至关重要。采用低温处理技术形成此类ETL将降低潜在的生产成本,并能适配多种衬底材料。在此,一种低温(<150°C)溶液法在氟掺杂氧化锡导电玻璃衬底上形成非晶二氧化钛纳米线(Am-TNW)薄膜。当用作PSC的ETL时,相对于高温(500°C)加热后获得的纳米晶锐钛矿型TNW(ATNW)层,Am-TNW层实现了更高的平均功率转换效率(18.3%)(ATNW层为16.7%)。与基于ATNW的PSC相比,基于Am-TNW的PSC在TNW/CHNHPbI界面处的电荷提取能力较差,但能更有效地抑制界面电荷复合。在Am-TNW和CHNHPbI之间插入富勒烯层可改善电荷提取。基于Am-TNW 的双层ETL分别使孔径为0.16 cm和1.00 cm的PSC的最佳功率转换效率达到20.3%和19.0%。这归因于增强光吸收、促进电荷提取和减少电荷复合的协同优势。在PSC中使用Am-TNW作为ETL提供了一种简便、有效的方法来提高PSC的效能。