Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey.
Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey.
J Biomol Struct Dyn. 2021 Mar;39(5):1600-1610. doi: 10.1080/07391102.2020.1736159. Epub 2020 Mar 9.
Amygdalin possesses anticancer properties and induces apoptosis. Based on experimental studies the presence of amygdalin with cancer cells led to activate the caspase-3 and BAX and inhibits Bcl-2 and Poly (ADP-ribose) polymerase-1 (PARP-1) but without deep information on action mode of these activities. Herein, we leaped forward to examine the molecular dynamics of the bound amygdalin and free ligand proteins, to identify precise action (conformation changes in targeted proteins) of amygdalin through using double docking and molecular dynamics (MD) simulations for 50 ns time scale. The MD simulations revealed that the binding of amygdalin led to disrupting the interaction between the Bcl-2/BAX complex. We furthermore conducted MD simulation for Bcl-2/amygdalin to investigate the stability of the complex which is responsible for inhibition of Bcl-2. It has been obtained a stable Bcl-2/amygdalin complex during the 50 ns. The results give a detail explanation of how amygdalin activates BAX and inhibits Bcl-2. For caspase-3, the matter is different, we found that amygdalin led to disrupting the interaction of caspase-3's two chains for intervals during 50 ns and then bind together repeatedly. The mechanism of caspase-3's activation through switching by disrupt the interacts for periodic intervals manner. For PARP-1, the dynamics simulations results indicated amygdalin interacts with PARP-1's binding site and forms stable interaction during simulation to render it inactive. Hence, amygdalin revealed a supernatural behavior through the MD simulations: it revealed a further clarification of the mystery amygdalin's experimental action which can act as a multifunctional drug in the cancer therapeutics.Communicated by Ramaswamy H. Sarma.
苦杏仁苷具有抗癌特性,并诱导细胞凋亡。基于实验研究,苦杏仁苷与癌细胞共存会激活 caspase-3 和 BAX,并抑制 Bcl-2 和聚(ADP-核糖)聚合酶-1(PARP-1),但对这些活性的作用模式没有深入的信息。在此,我们通过双对接和分子动力学(MD)模拟 50ns 时间尺度,进一步研究了结合态的苦杏仁苷和游离配体蛋白的分子动力学,以确定苦杏仁苷的确切作用(靶向蛋白的构象变化)。MD 模拟表明,苦杏仁苷的结合导致 Bcl-2/BAX 复合物的相互作用被破坏。我们还进行了 Bcl-2/苦杏仁苷的 MD 模拟,以研究负责抑制 Bcl-2 的复合物的稳定性。在 50ns 期间获得了稳定的 Bcl-2/苦杏仁苷复合物。结果详细解释了苦杏仁苷如何激活 BAX 并抑制 Bcl-2。对于 caspase-3,情况则不同,我们发现苦杏仁苷导致 caspase-3 的两条链在 50ns 期间的间隔内相互作用被破坏,然后反复结合。caspase-3 通过周期性间隔破坏相互作用来切换的激活机制。对于 PARP-1,动力学模拟结果表明,苦杏仁苷与 PARP-1 的结合位点相互作用,并在模拟过程中形成稳定的相互作用,使其失活。因此,苦杏仁苷通过 MD 模拟表现出一种超自然的行为:它进一步阐明了苦杏仁苷实验作用的奥秘,使其能够在癌症治疗中作为一种多功能药物发挥作用。由 Ramaswamy H. Sarma 传达。