Suppr超能文献

存在错误分类时的人群归因风险的估计和推断。

Estimation and inference for the population attributable risk in the presence of misclassification.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA and Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA.

出版信息

Biostatistics. 2021 Oct 13;22(4):805-818. doi: 10.1093/biostatistics/kxz067.

Abstract

Because it describes the proportion of disease cases that could be prevented if an exposure were entirely eliminated from a target population as a result of an intervention, estimation of the population attributable risk (PAR) has become an important goal of public health research. In epidemiologic studies, categorical covariates are often misclassified. We present methods for obtaining point and interval estimates of the PAR and the partial PAR (pPAR) in the presence of misclassification, filling an important existing gap in public health evaluation methods. We use a likelihood-based approach to estimate parameters in the models for the disease and for the misclassification process, under main study/internal validation study and main study/external validation study designs, and various plausible assumptions about transportability. We assessed the finite sample perf ormance of this method via a simulation study, and used it to obtain corrected point and interval estimates of the pPAR for high red meat intake and alcohol intake in relation to colorectal cancer incidence in the HPFS, where we found that the estimated pPAR for the two risk factors increased by up to 317% after correcting for bias due to misclassification.

摘要

由于归因风险(PAR)描述了由于干预措施,目标人群中完全消除某种暴露时可预防的疾病病例比例,因此,其估计已成为公共卫生研究的重要目标。在流行病学研究中,分类协变量常常被错误分类。我们提出了在存在错误分类的情况下获得 PAR 和部分 PAR(pPAR)的点估计和区间估计的方法,填补了公共卫生评估方法中的一个重要空白。我们在疾病和错误分类过程的模型中使用基于似然的方法来估计参数,这些模型适用于主要研究/内部验证研究和主要研究/外部验证研究设计,以及关于可转移性的各种合理假设。我们通过模拟研究评估了该方法的有限样本性能,并将其用于获得 HPFS 中与结直肠癌发病率相关的高红肉摄入和酒精摄入的 pPAR 的校正点估计和区间估计,在该研究中,我们发现两个风险因素的估计 pPAR 在纠正了错误分类引起的偏差后增加了高达 317%。

相似文献

本文引用的文献

1
Population attributable fractions continue to unmask the power of prevention.人群归因分数继续揭示预防的力量。
Br J Cancer. 2018 Apr;118(8):1031-1032. doi: 10.1038/s41416-018-0062-5. Epub 2018 Mar 23.
6
Doubly robust estimation of attributable fractions.双重稳健归因分数估计。
Biostatistics. 2011 Jan;12(1):112-21. doi: 10.1093/biostatistics/kxq049. Epub 2010 Aug 18.
7
Attributable fractions for sufficient cause interactions.充分病因相互作用的归因分数。
Int J Biostat. 2010 Feb 22;6(2):Article 5. doi: 10.2202/1557-4679.1202.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验