Suppr超能文献

双重稳健归因分数估计。

Doubly robust estimation of attributable fractions.

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden.

出版信息

Biostatistics. 2011 Jan;12(1):112-21. doi: 10.1093/biostatistics/kxq049. Epub 2010 Aug 18.

Abstract

The attributable fraction (AF) is a widely used measure to assess the impact of an exposure on a disease. It is commonly estimated through maximum likelihood, which requires a regression model for the outcome. Recently, it was demonstrated that the AF can also be estimated through inverse probability weighting, which requires a model for the exposure. In this paper, we derive doubly robust estimators for the AF. These estimators require one model for the outcome and one model for the exposure and are consistent if either model is correct, not necessarily both. We consider both cohort/cross-sectional studies and case-control studies.

摘要

归因分数(AF)是一种广泛用于评估暴露对疾病影响的度量方法。它通常通过最大似然法进行估计,该方法需要一个回归模型来预测结果。最近,人们证明 AF 也可以通过逆概率加权法进行估计,该方法需要一个暴露模型。在本文中,我们推导出了 AF 的双重稳健估计量。这些估计量需要一个结果模型和一个暴露模型,如果任何一个模型正确,那么估计量就是一致的,而不必两个模型都正确。我们同时考虑了队列/横断面研究和病例对照研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验