Suppr超能文献

双重稳健归因分数估计。

Doubly robust estimation of attributable fractions.

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden.

出版信息

Biostatistics. 2011 Jan;12(1):112-21. doi: 10.1093/biostatistics/kxq049. Epub 2010 Aug 18.

Abstract

The attributable fraction (AF) is a widely used measure to assess the impact of an exposure on a disease. It is commonly estimated through maximum likelihood, which requires a regression model for the outcome. Recently, it was demonstrated that the AF can also be estimated through inverse probability weighting, which requires a model for the exposure. In this paper, we derive doubly robust estimators for the AF. These estimators require one model for the outcome and one model for the exposure and are consistent if either model is correct, not necessarily both. We consider both cohort/cross-sectional studies and case-control studies.

摘要

归因分数(AF)是一种广泛用于评估暴露对疾病影响的度量方法。它通常通过最大似然法进行估计,该方法需要一个回归模型来预测结果。最近,人们证明 AF 也可以通过逆概率加权法进行估计,该方法需要一个暴露模型。在本文中,我们推导出了 AF 的双重稳健估计量。这些估计量需要一个结果模型和一个暴露模型,如果任何一个模型正确,那么估计量就是一致的,而不必两个模型都正确。我们同时考虑了队列/横断面研究和病例对照研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验