Suppr超能文献

致病 PTPN11 变体涉及多聚谷氨酰胺 Gln-Gln-Gln 延伸,突出了 SHP2 功能调节中螺旋 B 的相关性。

Pathogenic PTPN11 variants involving the poly-glutamine Gln -Gln -Gln stretch highlight the relevance of helix B in SHP2's functional regulation.

机构信息

Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.

Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.

出版信息

Hum Mutat. 2020 Jun;41(6):1171-1182. doi: 10.1002/humu.24007. Epub 2020 Mar 11.

Abstract

Germline PTPN11 mutations cause Noonan syndrome (NS), the most common disorder among RASopathies. PTPN11 encodes SHP2, a protein tyrosine-phosphatase controlling signaling through the RAS-MAPK and PI3K-AKT pathways. Generally, NS-causing PTPN11 mutations are missense changes destabilizing the inactive conformation of the protein or enhancing its binding to signaling partners. Here, we report on two PTPN11 variants resulting in the deletion or duplication of one of three adjacent glutamine residues (Gln -to-Gln ). While p.(Gln257dup) caused a typical NS phenotype in carriers of a first family, p.(Gln257del) had incomplete penetrance in a second family. Missense mutations involving Gln had previously been reported in NS. This poly-glutamine stretch is located on helix B of the PTP domain, a region involved in stabilizing SHP2 in its autoinhibited state. Molecular dynamics simulations predicted that changes affecting this motif perturb the SHP2's catalytically inactive conformation and/or substrate recognition. Biochemical data showed that duplication and deletion of Gln variably enhance SHP2's catalytic activity, while missense changes involving Gln affect substrate specificity. Expression of mutants in HEK293T cells documented their activating role on MAPK signaling, uncoupling catalytic activity and modulation of intracellular signaling. These findings further document the relevance of helix B in the regulation of SHP2's function.

摘要

胚系 PTPN11 突变导致诺南综合征(NS),这是 RAS 通路疾病中最常见的疾病。PTPN11 编码 SHP2,一种蛋白酪氨酸磷酸酶,通过 RAS-MAPK 和 PI3K-AKT 通路控制信号转导。通常,导致 NS 的 PTPN11 突变是使蛋白的无活性构象不稳定或增强其与信号伙伴结合的错义变化。在这里,我们报告了两个 PTPN11 变体,导致三个相邻谷氨酰胺残基之一的缺失或重复(Qln -to-Gln )。虽然 p.(Gln257dup)在第一个家族的携带者中导致典型的 NS 表型,但 p.(Gln257del)在第二个家族中不完全外显。以前在 NS 中报道过涉及 Gln 的错义突变。这个多谷氨酰胺延伸位于 PTP 结构域的 B 螺旋上,该区域参与稳定 SHP2 的自身抑制状态。分子动力学模拟预测,影响该模体的变化会破坏 SHP2 的无催化活性构象和/或底物识别。生化数据表明,Gln 的重复和缺失可不同程度地增强 SHP2 的催化活性,而涉及 Gln 的错义变化会影响底物特异性。在 HEK293T 细胞中表达突变体证明了它们对 MAPK 信号的激活作用,将催化活性与细胞内信号的调节解耦。这些发现进一步证明了 B 螺旋在调节 SHP2 功能方面的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验