Suppr超能文献

基于全局语义相似性学习的深度类别级正则哈希

Deep Category-Level and Regularized Hashing With Global Semantic Similarity Learning.

作者信息

Chen Yaxiong, Lu Xiaoqiang

出版信息

IEEE Trans Cybern. 2021 Dec;51(12):6240-6252. doi: 10.1109/TCYB.2020.2964993. Epub 2021 Dec 22.

Abstract

The hashing technique has been extensively used in large-scale image retrieval applications due to its low storage and fast computing speed. Most existing deep hashing approaches cannot fully consider the global semantic similarity and category-level semantic information, which result in the insufficient utilization of the global semantic similarity for hash codes learning and the semantic information loss of hash codes. To tackle these issues, we propose a novel deep hashing approach with triplet labels, namely, deep category-level and regularized hashing (DCRH), to leverage the global semantic similarity of deep feature and category-level semantic information to enhance the semantic similarity of hash codes. There are four contributions in this article. First, we design a novel global semantic similarity constraint about the deep feature to make the anchor deep feature more similar to the positive deep feature than to the negative deep feature. Second, we leverage label information to enhance category-level semantics of hash codes for hash codes learning. Third, we develop a new triplet construction module to select good image triplets for effective hash functions learning. Finally, we propose a new triplet regularized loss (Reg-L) term, which can force binary-like codes to approximate binary codes and eventually minimize the information loss between binary-like codes and binary codes. Extensive experimental results in three image retrieval benchmark datasets show that the proposed DCRH approach achieves superior performance over other state-of-the-art hashing approaches.

摘要

由于哈希技术存储量低且计算速度快,已在大规模图像检索应用中得到广泛使用。大多数现有的深度哈希方法无法充分考虑全局语义相似性和类别级语义信息,这导致在哈希码学习中全局语义相似性利用不足以及哈希码的语义信息丢失。为了解决这些问题,我们提出了一种带有三元组标签的新型深度哈希方法,即深度类别级正则化哈希(DCRH),以利用深度特征的全局语义相似性和类别级语义信息来增强哈希码的语义相似性。本文有四个贡献。第一,我们针对深度特征设计了一种新颖的全局语义相似性约束,以使锚定深度特征与正深度特征比与负深度特征更相似。第二,我们利用标签信息增强哈希码学习中哈希码的类别级语义。第三,我们开发了一个新的三元组构建模块,以选择良好的图像三元组用于有效的哈希函数学习。最后,我们提出了一个新的三元组正则化损失(Reg-L)项,它可以迫使类二进制码逼近二进制码,并最终最小化类二进制码和二进制码之间的信息损失。在三个图像检索基准数据集上的大量实验结果表明,所提出的DCRH方法比其他现有最先进的哈希方法具有更优的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验