State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China.
Mol Plant Pathol. 2020 May;21(5):652-666. doi: 10.1111/mpp.12920. Epub 2020 Feb 29.
The type IV pilus (T4P), a special class of bacterial surface filament, plays crucial roles in surface adhesion, motility, biofilm formation, and virulence in pathogenic bacteria. However, the regulatory mechanism of T4P and its relationship to bacterial virulence are still little understood in Xanthomonas oryzae pv. oryzae (Xoo), the causal pathogen of bacterial blight of rice. Our previous studies showed that the σ factor RpoN2 regulated bacterial virulence on rice in a flagellum-independent manner in Xoo. In this study, both yeast two-hybrid and pull-down assays revealed that RpoN2 directly and specifically interacted with PilRX, a homolog of the response regulator PilR of the two-component system PilS-PilR in the pilus gene cluster. Genomic sequence and reverse transcription PCR (RT-PCR) analysis showed 13 regulons containing 25 genes encoding T4P structural components and putative regulators. A consensus RpoN2-binding sequence GGN GC was identified in the promoter sequences of most T4P gene transcriptional units. Electrophoretic mobility shift assays confirmed the direct binding of RpoN2 to the promoter of the major pilin gene pilAX, the inner membrane platform protein gene pilCX, and pilRX. Promoter activity and quantitative RT-PCR assays demonstrated direct and indirect transcriptional regulation by RpoN2 of the T4P genes. In addition, individual deletions of pilAX, pilCX, and pilRX resulted in significantly reduced twitching and swimming motility, biofilm formation, and virulence in rice. Taken together, the findings from the current study suggest that the RpoN2-PilRX regulatory system controls bacterial motility and virulence by regulating T4P gene transcription in Xoo.
IV 型菌毛(T4P)是一种特殊的细菌表面丝,在致病性细菌的表面黏附、运动、生物膜形成和毒力中起着关键作用。然而,在稻黄单胞菌(Xanthomonas oryzae pv. oryzae,Xoo)中,T4P 的调控机制及其与细菌毒力的关系仍知之甚少,Xoo 是水稻细菌性条斑病的病原体。我们之前的研究表明,σ 因子 RpoN2 在 Xoo 中以鞭毛非依赖的方式调节细菌对水稻的毒力。在本研究中,酵母双杂交和 pull-down 实验均表明,RpoN2 直接且特异性地与 PilRX 相互作用,PilRX 是菌毛基因簇中双组分系统 PilS-PilR 的应答调节子 PilR 的同源物。基因组序列和反转录 PCR(RT-PCR)分析显示,包含 25 个编码 T4P 结构成分和假定调控因子的基因的 13 个调控子。在大多数 T4P 基因转录单元的启动子序列中,鉴定出一个 RpoN2 结合序列 GGN GC。电泳迁移率变动分析证实了 RpoN2 与主要菌毛基因 pilAX、内膜平台蛋白基因 pilCX 和 pilRX 启动子的直接结合。启动子活性和定量 RT-PCR 分析表明,RpoN2 直接和间接调节 T4P 基因的转录。此外,pilAX、pilCX 和 pilRX 的单个缺失导致在水稻中的 twitching 和泳动运动、生物膜形成和毒力显著降低。总之,本研究的结果表明,RpoN2-PilRX 调控系统通过调节 T4P 基因的转录来控制 Xoo 中的细菌运动和毒力。