Plasser F
Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom.
J Chem Phys. 2020 Feb 28;152(8):084108. doi: 10.1063/1.5143076.
The advent of ever more powerful excited-state electronic structure methods has led to a tremendous increase in the predictive power of computation, but it has also rendered the analysis of these computations much more challenging and time-consuming. TheoDORE tackles this problem through providing tools for post-processing excited-state computations, which automate repetitive tasks and provide rigorous and reproducible descriptors. Interfaces are available for ten different quantum chemistry codes and a range of excited-state methods implemented therein. This article provides an overview of three popular functionalities within TheoDORE, a fragment-based analysis for assigning state character, the computation of exciton sizes for measuring charge transfer, and the natural transition orbitals used not only for visualization but also for quantifying multiconfigurational character. Using the examples of an organic push-pull chromophore and a transition metal complex, it is shown how these tools can be used for a rigorous and automated assignment of excited-state character. In the case of a conjugated polymer, we venture beyond the limits of the traditional molecular orbital picture to uncover spatial correlation effects using electron-hole correlation plots and conditional densities.
功能越来越强大的激发态电子结构方法的出现,极大地提高了计算的预测能力,但也使得对这些计算的分析变得更具挑战性且耗时。TheoDORE通过提供激发态计算后处理工具来解决这个问题,这些工具可自动执行重复性任务,并提供严格且可重复的描述符。它具有适用于十种不同量子化学代码以及其中实现的一系列激发态方法的接口。本文概述了TheoDORE中的三种常用功能:用于指定态特征的基于片段的分析、用于测量电荷转移的激子大小计算,以及不仅用于可视化还用于量化多组态特征的自然跃迁轨道。通过有机推拉发色团和过渡金属配合物的例子,展示了如何使用这些工具对激发态特征进行严格且自动的指定。对于共轭聚合物的情况,我们超越了传统分子轨道图像的限制,使用电子 - 空穴相关图和条件密度来揭示空间相关效应。