Suppr超能文献

使用 EEG、心率和皮肤电反应实时多模态动态情感估计。

Real-Time Multi-Modal Estimation of Dynamically Evoked Emotions Using EEG, Heart Rate and Galvanic Skin Response.

机构信息

Departamento de Inteligencia Artificial, UNED, Juan del Rosal, 16, Madrid, E-28040, Spain.

Departamento de Tecnologías de la Información y las Comunicaciones, Univ. Politécnica de Cartagena, Edif. Antigones, Pza del Hospital, 1, E-30202 Cartagena, Spain.

出版信息

Int J Neural Syst. 2020 Apr;30(4):2050013. doi: 10.1142/S0129065720500136. Epub 2020 Mar 2.

Abstract

Emotion estimation systems based on brain and physiological signals such as electro encephalography (EEG), blood-volume pressure (BVP), and galvanic skin response (GSR) are gaining special attention in recent years due to the possibilities they offer. The field of human-robot interactions (HRIs) could benefit from a broadened understanding of the brain and physiological emotion encoding, together with the use of lightweight software and cheap wearable devices, and thus improve the capabilities of robots to fully engage with the users emotional reactions. In this paper, a previously developed methodology for real-time emotion estimation aimed for its use in the field of HRI is tested under realistic circumstances using a self-generated database created using dynamically evoked emotions. Other state-of-the-art, real-time approaches address emotion estimation using constant stimuli to facilitate the analysis of the evoked responses, remaining far from real scenarios since emotions are dynamically evoked. The proposed approach studies the feasibility of the emotion estimation methodology previously developed, under an experimentation paradigm that imitates a more realistic scenario involving dynamically evoked emotions by using a dramatic film as the experimental paradigm. The emotion estimation methodology has proved to perform on real-time constraints while maintaining high accuracy on emotion estimation when using the self-produced dynamically evoked emotions multi-signal database.

摘要

基于脑和生理信号的情感估计系统,如脑电图 (EEG)、血压 (BVP) 和皮肤电反应 (GSR),由于其提供的可能性,近年来受到了特别关注。人机交互 (HRI) 领域可以通过更广泛地了解大脑和生理情感编码,并结合使用轻量级软件和廉价可穿戴设备,从而提高机器人充分参与用户情感反应的能力。在本文中,使用使用动态诱发情感创建的自生成数据库,在真实情况下测试了针对 HRI 领域使用而预先开发的实时情感估计方法。其他最先进的实时方法使用恒定刺激来进行情感估计,以方便对诱发反应进行分析,这与真实场景相去甚远,因为情感是动态诱发的。所提出的方法研究了先前开发的情感估计方法在实验范例下的可行性,该范例通过使用戏剧性电影作为实验范例来模拟涉及动态诱发情感的更现实场景。当使用自行产生的动态诱发多信号情感数据库时,情感估计方法已被证明能够实时运行,同时在情感估计方面保持高精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验