Plodinec Milivoj, Nerl Hannah C, Farra Ramzi, Willinger Marc G, Stotz Eugen, Schlögl Robert, Lunkenbein Thomas
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.
Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
Microsc Microanal. 2020 Apr;26(2):220-228. doi: 10.1017/S143192762000015X.
Understanding how catalysts work during chemical reactions is crucial when developing efficient catalytic materials. The dynamic processes involved are extremely sensitive to changes in pressure, gas environment and temperature. Hence, there is a need for spatially resolved operando techniques to investigate catalysts under working conditions and over time. The use of dedicated operando techniques with added detection of catalytic conversion presents a unique opportunity to study the mechanisms underlying the catalytic reactions systematically. Herein, we report on the detailed setup and technical capabilities of a modular, homebuilt gas feed system directly coupled to a quadrupole mass spectrometer, which allows for operando transmission electron microscopy (TEM) studies of heterogeneous catalysts. The setup is compatible with conventional, commercially available gas cell TEM holders, making it widely accessible and reproducible by the community. In addition, the operando functionality of the setup was tested using CO oxidation over Pt nanoparticles.
在开发高效催化材料时,了解催化剂在化学反应过程中的作用至关重要。所涉及的动态过程对压力、气体环境和温度的变化极为敏感。因此,需要空间分辨的原位技术来研究工作条件下以及随时间变化的催化剂。使用专门的原位技术并增加催化转化检测,为系统研究催化反应的潜在机制提供了独特的机会。在此,我们报告了一种直接与四极杆质谱仪耦合的模块化自制气体进料系统的详细设置和技术能力,该系统允许对多相催化剂进行原位透射电子显微镜(TEM)研究。该设置与传统的、市售的气体池TEM支架兼容,使得该社区能够广泛使用并重复。此外,使用铂纳米颗粒上的CO氧化测试了该设置的原位功能。