Suppr超能文献

几种匹配调整间接比较(MAICs)的组合及其在银屑病中的应用。

Combination of several matching adjusted indirect comparisons (MAICs) with an application in psoriasis.

机构信息

Eli Lilly and Company, Indianapolis, Indiana.

出版信息

Pharm Stat. 2020 Sep;19(5):532-540. doi: 10.1002/pst.2011. Epub 2020 Mar 1.

Abstract

In health technology assessment (HTA), beside network meta-analysis (NMA), indirect comparisons (IC) have become an important tool used to provide evidence between two treatments when no head-to-head data are available. Researchers may use the adjusted indirect comparison based on the Bucher method (AIC) or the matching-adjusted indirect comparison (MAIC). While the Bucher method may provide biased results when included trials differ in baseline characteristics that influence the treatment outcome (treatment effect modifier), this issue may be addressed by applying the MAIC method if individual patient data (IPD) for at least one part of the AIC is available. Here, IPD is reweighted to match baseline characteristics and/or treatment effect modifiers of published data. However, the MAIC method does not provide a solution for situations when several common comparators are available. In these situations, assuming that the indirect comparison via the different common comparators is homogeneous, we propose merging these results by using meta-analysis methodology to provide a single, potentially more precise, treatment effect estimate. This paper introduces the method to combine several MAIC networks using classic meta-analysis techniques, it discusses the advantages and limitations of this approach, as well as demonstrates a practical application to combine several (M)AIC networks using data from Phase III psoriasis randomized control trials (RCT).

摘要

在健康技术评估(HTA)中,除了网络荟萃分析(NMA)之外,间接比较(IC)已成为当没有头对头数据可用时,用于提供两种治疗方法之间证据的重要工具。研究人员可能会使用基于 Bucher 方法(AIC)的调整间接比较(AIC)或匹配调整间接比较(MAIC)。当纳入的试验在影响治疗效果的基线特征(治疗效果修饰因子)上存在差异时,Bucher 方法可能会提供有偏差的结果,而如果至少有一部分 AIC 的个体患者数据(IPD)可用,则可以通过应用 MAIC 方法解决此问题。在这里,将 IPD 重新加权以匹配已发表数据的基线特征和/或治疗效果修饰因子。但是,MAIC 方法不能解决当有几个常见的对照时的情况。在这些情况下,假设通过不同的常见对照进行间接比较是同质的,我们通过使用荟萃分析方法来合并这些结果,以提供一个单一的、可能更准确的治疗效果估计值。本文介绍了使用经典荟萃分析技术合并多个 MAIC 网络的方法,讨论了该方法的优点和局限性,并展示了使用来自 III 期银屑病随机对照试验(RCT)的数据合并多个(M)AIC 网络的实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验