School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland.
National Centre of Pharmacoeconomics, St. James Hospital, Dublin, Ireland.
Res Synth Methods. 2019 Dec;10(4):546-568. doi: 10.1002/jrsm.1372. Epub 2019 Oct 14.
If IPD is available for some or all trials in a network meta-analysis (NMA), then incorporating this IPD into an NMA is routinely considered to be preferable. However, the situation often arises where a researcher has IPD for trials concerning a particular treatment (eg, from a sponsor) but none for other trials. Therefore, one can reweight the IPD so that the covariate characteristics in the IPD trials match that of the aggregate data (AgD) trials, using a matching-adjusted indirect comparison (MAIC). We assess the impact of using the reweighted aggregated data, obtained by the MAIC, in a Bayesian NMA for a connected treatment network. We apply this method to a network of multiple myeloma treatments in newly diagnosed patients (ndMM), where the outcome is progression free survival. We investigate the reliability of the methods and results through a simulation study. The ndMM network consists of three IPD studies comparing lenalidomide to placebo (Len-Placebo), one AgD study comparing Len-Placebo, and one AgD study comparing thalidomide to placebo (Thal-Placebo). We therefore investigate two options of weighting the covariates: (a) All three studies are weighted separately to match the AgD Thal-Placebo trial. (b) Patients are weighted across all three IPD studies to match the AgD Thal-Placebo trial, but the NMA considers each trial separately. We observe limited benefit to MAIC in the full network population. While MAIC can be beneficial as a sensitivity analysis to confirm results across patient populations, we advise that MAIC is used and interpreted with caution.
如果网络荟萃分析(NMA)中的某些或所有试验都有个体患者数据(IPD)可用,那么将这些 IPD 纳入 NMA 通常被认为是首选。然而,研究人员经常会遇到这样的情况,即他们拥有针对特定治疗(例如,来自赞助商)的试验的 IPD,但没有其他试验的 IPD。因此,可以使用匹配调整间接比较(MAIC)对 IPD 试验进行重新加权,以使 IPD 试验的协变量特征与综合数据(AgD)试验匹配。我们评估了在连接治疗网络的贝叶斯 NMA 中使用 MAIC 重新加权汇总数据的影响。我们将这种方法应用于新诊断多发性骨髓瘤(ndMM)患者的多种治疗方法的网络中,该网络的结局是无进展生存期。我们通过模拟研究来调查该方法和结果的可靠性。ndMM 网络由三项比较来那度胺与安慰剂的 IPD 研究(Len-Placebo)、一项比较 Len-Placebo 的 AgD 研究和一项比较沙利度胺与安慰剂的 AgD 研究(Thal-Placebo)组成。因此,我们调查了两种加权协变量的选项:(a)分别对所有三项 IPD 研究进行加权,以匹配 AgD Thal-Placebo 试验。(b)对所有三项 IPD 研究中的患者进行加权,以匹配 AgD Thal-Placebo 试验,但 NMA 分别考虑每个试验。我们观察到 MAIC 在整个网络人群中几乎没有获益。虽然 MAIC 可以作为敏感性分析来在患者人群中确认结果,但我们建议谨慎使用和解释 MAIC。