Suppr超能文献

声驱动的芳香生物分子耗散自组装成功能性纳米颗粒。

Sound-driven dissipative self-assembly of aromatic biomolecules into functional nanoparticles.

机构信息

School of Chemistry, University of Melbourne, VIC 3010, Australia.

Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", via della ricerca scientifica 1, 00133, Rome, Italy.

出版信息

Nanoscale Horiz. 2020 Mar 2;5(3):553-563. doi: 10.1039/c9nh00611g.

Abstract

Dissipative self-assembly processes were recently exploited to assemble synthetic materials into supramolecular structures. In most cases, chemical fuel or light driven self-assembly of synthetic molecules was reported. Herein, experimental and computational approaches were used to unveil the role of acoustic cavitation in the formation of supramolecular nanoaggregates by dissipative self-assembly. Acoustic cavitation bubbles were employed as an energy source and a transient interface to fuel and refuel the dissipative self-assembly of simple aromatic biomolecules into uniform nanoparticles. Molecular dynamics simulations were applied to predict the formation of metastable aggregates and the dynamic exchange of the interacting molecules in the nanoaggregates. The intracellular trafficking and dissipative dissolution of the nanoparticles were tracked by microscopy imaging.

摘要

耗散自组装过程最近被用于将合成材料组装成超分子结构。在大多数情况下,报道了化学燃料或光驱动的合成分子的自组装。在此,通过耗散自组装,使用实验和计算方法揭示了声空化在形成超分子纳米聚集体中的作用。声空化气泡被用作能量源和瞬态界面,以促进和补充简单芳香生物分子向均匀纳米颗粒的耗散自组装。应用分子动力学模拟来预测亚稳聚集体的形成和纳米聚集体中相互作用分子的动态交换。通过显微镜成像跟踪纳米颗粒的细胞内运输和耗散溶解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验