Potter Terence, Agarwal Ankit, Schaefer Timothy J.
Texas Tech University Health Sciences Center El Paso
The internal carotid and vertebral arteries give rise to the brain's blood supply. The arterial branches lie in the subarachnoid space. The internal carotid arteries originate in the neck from the common carotid arteries, ascend to the skull base, and enter the middle cranial fossa through the carotid canals. The carotid arteries pass anteromedially toward the cavernous sinus on the sphenoid body. The anterior and middle cerebral arteries are the internal carotid arteries' terminal branches, comprising the brain's anterior circulation. The anterior communicating artery bridges the right and left anterior cerebral arteries. The vertebral arteries are the first branches of the first part of the subclavian arteries, arising from the root of the neck (see . Branches of the Aorta). The superior vertebral artery segments run through the C1 to C6 transverse foramina. Suboccipital branches enter the dura and arachnoid and traverse the foramen magnum (see . Vertebral Artery Anatomy in the Neck Region). The basilar artery arises from the fusion of the right and left vertebral arteries at the caudal pontine margin. This artery then ascends to the superior pontine border and bifurcates into 2 posterior cerebral arteries. The vertebrobasilar arterial system comprises the brain's posterior circulation. The posterior communicating arteries connect the internal carotid and posterior cerebral arteries. Connecting the anterior and posterior brain circulations completes the cerebral arterial circle of Willis (see . Arterial Circulation of the Brain). The dural venous sinuses drain the superficial and deep veins of the brain. These venous sinuses empty into the internal jugular veins. The veins on the brain's superolateral aspect drain into the superior sagittal sinus. Their posteroinferior counterparts empty into the straight, superior petrosal, and transverse sinuses. The blood-brain barrier (BBB) separates the peripheral and central nervous system (CNS) circulation. Endothelial cells connected by tight junctions are the main BBB components. The tight junctions hinder paracellular transport that can contaminate the cerebral vasculature. Other cells comprising the BBB include the astrocytes, pericytes, and microglia. Astrocyte endfeet (podocytes) form the glia limitans, a membrane that further hinders solute movement across the BBB. Without membrane transporters, only small or lipid-soluble particles can enter the CNS circulation.[38] Angiotensin receptors make the BBB sensitive to the effects of the renin-aldosterone-angiotensin system. These receptors mediate endocrine regulation of water and electrolyte balance, vascular resistance, oxidative stress, neuroinflammation, and brain homeostasis.[39] A hypertensive emergency is a life-threatening condition. Target-organ damage occurs due to markedly elevated blood pressure.[1] Hypertensive emergencies may arise in patients with or without a history of preexisting hypertension.[2] Pulmonary edema, cardiac ischemic events, acute renal failure, aortic dissection, eclampsia, retinopathy, encephalopathy, and intracranial hemorrhage may develop as a result of hypertension-related organ injury.[3] Hypertensive encephalopathy is an uncommon hypertensive emergency manifestation. Signs and symptoms include severe headaches, nausea, vomiting, visual disturbances, seizures, and mental status changes.[4] The condition is diagnosed after ruling out other CNS dysfunction etiologies. Lowering the blood pressure dramatically improves symptoms. Early recognition of hypertensive encephalopathy can result in favorable clinical outcomes as prompt treatment can reverse the symptoms of this condition.[5]
颈内动脉和椎动脉为大脑供血。动脉分支位于蛛网膜下腔。颈内动脉在颈部起自颈总动脉,向上至颅底,经颈动脉管进入中颅窝。颈动脉向前内侧走行,朝向蝶骨体上的海绵窦。大脑前动脉和大脑中动脉是颈内动脉的终末分支,构成大脑的前循环。前交通动脉连接左右大脑前动脉。椎动脉是锁骨下动脉第一部分的第一分支,起自颈部根部(见“主动脉分支”)。椎动脉上段穿过C1至C6横突孔。枕下分支进入硬脑膜和蛛网膜,穿过枕骨大孔(见“颈部区域的椎动脉解剖”)。基底动脉由左右椎动脉在脑桥尾缘汇合而成。然后该动脉向上至脑桥上缘,分为两条大脑后动脉。椎基底动脉系统构成大脑的后循环。后交通动脉连接颈内动脉和大脑后动脉。连接大脑前后循环,就完成了Willis脑动脉环(见“大脑的动脉循环”)。硬脑膜静脉窦引流大脑的浅静脉和深静脉。这些静脉窦汇入颈内静脉。大脑上外侧的静脉汇入上矢状窦。其后下侧的静脉汇入直窦、岩上窦和横窦。血脑屏障将外周和中枢神经系统(CNS)循环分隔开。通过紧密连接相连的内皮细胞是血脑屏障的主要组成部分。紧密连接阻碍可污染脑血管的细胞旁转运。构成血脑屏障的其他细胞包括星形胶质细胞、周细胞和小胶质细胞。星形胶质细胞终足(足细胞)形成胶质界膜,这是一种进一步阻碍溶质跨血脑屏障移动的膜。没有膜转运体,只有小的或脂溶性颗粒才能进入CNS循环。[38]血管紧张素受体使血脑屏障对肾素-醛固酮-血管紧张素系统的作用敏感。这些受体介导水和电解质平衡、血管阻力、氧化应激、神经炎症和脑内稳态的内分泌调节。[39]高血压急症是一种危及生命的情况。由于血压显著升高,会发生靶器官损害。[1]高血压急症可发生在有或无既往高血压病史的患者中。[2]高血压相关的器官损伤可能导致肺水肿、心脏缺血事件、急性肾衰竭、主动脉夹层分离、子痫、视网膜病变、脑病和颅内出血。[3]高血压脑病是一种不常见的高血压急症表现。体征和症状包括严重头痛、恶心、呕吐、视觉障碍、癫痫发作和精神状态改变。[4]在排除其他CNS功能障碍病因后诊断该病。大幅降低血压可显著改善症状。早期识别高血压脑病可带来良好的临床结局,因为及时治疗可逆转该病的症状。[5]