Suppr超能文献

通过选择性靶向 CRISPR-Cas12a 的不同功能状态来提高基因组编辑效率的小分子的合理设计。

Rational Design of Small Molecules to Enhance Genome Editing Efficiency by Selectively Targeting Distinct Functional States of CRISPR-Cas12a.

机构信息

Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.

Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.

出版信息

Bioconjug Chem. 2020 Mar 18;31(3):542-546. doi: 10.1021/acs.bioconjchem.0c00062. Epub 2020 Mar 6.

Abstract

CRISPR-Cas12a, a type-V CRISPR-Cas endonuclease, is an effective genome editing platform. To improve the gene editing efficiency of Cas12a, we rationally designed small molecule enhancers through a combined computational approach. First, we used extensive molecular dynamics (MD) simulations to explore the conformational landscape of Cas12a from (AsCas12a), revealing distinct conformational states that could be targeted by small molecules to modulate its genome editing function. We then identified 57 compounds that showed different binding behavior and stabilizing effects on these distinct conformational states using molecular docking. After experimental testing 6 of these 57 compounds, compound , quinazoline-2,4(1,3)-dione, was found particularly promising in enhancing the AsCas12a-mediated genome editing efficiency in human cells. Compound was shown to act like a molecular "glue" at the interface between AsCas12a and crRNA near the 5'-handle region, thus specifically stabilizing the enzyme-crRNA complex. These results provide a new paradigm for future design of small molecules to modulate the genome editing of the CRISPR-Cas systems.

摘要

CRISPR-Cas12a,一种 V 型 CRISPR-Cas 内切酶,是一种有效的基因组编辑平台。为了提高 Cas12a 的基因编辑效率,我们通过联合计算方法合理设计了小分子增强剂。首先,我们使用广泛的分子动力学 (MD) 模拟来探索来自 (AsCas12a) 的 Cas12a 的构象景观,揭示了可以被小分子靶向的不同构象状态,从而调节其基因组编辑功能。然后,我们使用分子对接识别了 57 种化合物,这些化合物显示出不同的结合行为,并对这些不同的构象状态具有稳定作用。在对这 57 种化合物中的 6 种进行实验测试后,发现化合物 ,喹唑啉-2,4(1,3)-二酮,在增强人类细胞中 AsCas12a 介导的基因组编辑效率方面特别有前景。该化合物被证明在 Cas12a 和 crRNA 之间的界面上(靠近 5'-手柄区域)充当分子“胶”,从而特异性地稳定酶-crRNA 复合物。这些结果为未来设计小分子来调节 CRISPR-Cas 系统的基因组编辑提供了新的范例。

相似文献

1
Rational Design of Small Molecules to Enhance Genome Editing Efficiency by Selectively Targeting Distinct Functional States of CRISPR-Cas12a.
Bioconjug Chem. 2020 Mar 18;31(3):542-546. doi: 10.1021/acs.bioconjchem.0c00062. Epub 2020 Mar 6.
2
CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects.
J Biol Chem. 2020 Apr 24;295(17):5538-5553. doi: 10.1074/jbc.RA120.012933. Epub 2020 Mar 11.
3
Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica.
Methods Mol Biol. 2021;2307:111-121. doi: 10.1007/978-1-0716-1414-3_7.
4
Improving the efficiency of CRISPR-Cas12a-based genome editing with site-specific covalent Cas12a-crRNA conjugates.
Mol Cell. 2021 Nov 18;81(22):4747-4756.e7. doi: 10.1016/j.molcel.2021.09.021. Epub 2021 Oct 13.
5
6
Kinetic dissection of pre-crRNA binding and processing by CRISPR-Cas12a.
RNA. 2024 Sep 16;30(10):1345-1355. doi: 10.1261/rna.080088.124.
7
Engineered Cas12a-Plus nuclease enables gene editing with enhanced activity and specificity.
BMC Biol. 2022 Apr 25;20(1):91. doi: 10.1186/s12915-022-01296-1.
8
The Acidaminococcus sp. Cas12a nuclease recognizes GTTV and GCTV as non-canonical PAMs.
FEMS Microbiol Lett. 2019 Apr 1;366(8). doi: 10.1093/femsle/fnz085.
9
Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing.
Nat Biotechnol. 2019 Mar;37(3):276-282. doi: 10.1038/s41587-018-0011-0. Epub 2019 Feb 11.
10
CRISPR/Cas12a-Mediated Genome Editing in .
ACS Synth Biol. 2023 Apr 21;12(4):1204-1215. doi: 10.1021/acssynbio.2c00676. Epub 2023 Apr 5.

引用本文的文献

1
Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing.
Anal Bioanal Chem. 2025 Apr;417(9):1699-1711. doi: 10.1007/s00216-024-05678-y. Epub 2024 Nov 27.
2
Carrier strategies boost the application of CRISPR/Cas system in gene therapy.
Exploration (Beijing). 2022 Mar 15;2(2):20210081. doi: 10.1002/EXP.20210081. eCollection 2022 Apr.
3
Small Molecules for Enhancing the Precision and Safety of Genome Editing.
Molecules. 2022 Sep 23;27(19):6266. doi: 10.3390/molecules27196266.
5
Cytosine and adenosine base editing in human pluripotent stem cells using transient reporters for editing enrichment.
Nat Protoc. 2021 Jul;16(7):3596-3624. doi: 10.1038/s41596-021-00552-y. Epub 2021 Jun 25.
6
Leveraging mRNA Sequences and Nanoparticles to Deliver SARS-CoV-2 Antigens In Vivo.
Adv Mater. 2020 Oct;32(40):e2004452. doi: 10.1002/adma.202004452. Epub 2020 Sep 2.

本文引用的文献

1
Targeted protein degradation: elements of PROTAC design.
Curr Opin Chem Biol. 2019 Jun;50:111-119. doi: 10.1016/j.cbpa.2019.02.022. Epub 2019 Apr 17.
2
In vivo profiling of metastatic double knockouts through CRISPR-Cpf1 screens.
Nat Methods. 2019 May;16(5):405-408. doi: 10.1038/s41592-019-0371-5. Epub 2019 Apr 8.
3
Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing.
Nat Biotechnol. 2019 Mar;37(3):276-282. doi: 10.1038/s41587-018-0011-0. Epub 2019 Feb 11.
4
Mechanistic Insights into the cis- and trans-Acting DNase Activities of Cas12a.
Mol Cell. 2019 Feb 7;73(3):589-600.e4. doi: 10.1016/j.molcel.2018.11.021. Epub 2019 Jan 10.
5
Conformational Activation Promotes CRISPR-Cas12a Catalysis and Resetting of the Endonuclease Activity.
Cell. 2018 Dec 13;175(7):1856-1871.e21. doi: 10.1016/j.cell.2018.10.045. Epub 2018 Nov 29.
7
Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing.
Nat Protoc. 2018 May;13(5):899-914. doi: 10.1038/nprot.2018.004. Epub 2018 Apr 5.
8
Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells.
Nat Commun. 2018 Apr 3;9(1):1303. doi: 10.1038/s41467-018-03760-5.
9
Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency.
Nat Biomed Eng. 2017 May;1(5). doi: 10.1038/s41551-017-0066. Epub 2017 May 10.
10
Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
Mol Cell. 2017 Aug 17;67(4):633-645.e3. doi: 10.1016/j.molcel.2017.06.035. Epub 2017 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验