Liang Wenkai, Sun Yinghui, Liang Zhiqiang, Li Dong, Wang Yawen, Qin Wei, Jiang Lin
Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
College of Energy, Soochow Institute for Energy and Materials InnovationS and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16753-16761. doi: 10.1021/acsami.9b20843. Epub 2020 Mar 6.
Plasmonic metal nanostructures offer the unique ability to effectively enhance sunlight harvesting by localized surface plasmon resonance (LSPR), which can induce direct photocatalytic reactions. However, only metal nanoparticles with a relatively low magnitude of electromagnetic field enhancement usually require a high illumination intensity to ensure the catalytic performance, which greatly limits the solar photocatalytic efficiency. Herein, we designed plasmonic Au nanoparticle film with high electromagnetic field enhancement to achieve high-efficiency catalytic activity under low-power NIR light illumination. This work minimized the influence of the photothermal effect on the reaction by using a low illumination intensity and further revealed the main contribution of plasmon-excited hot electrons to the photochemical reaction. This study provides important insights into the study of the mechanism of LSPR in photocatalytic reactions and further improves the efficiency of solar energy utilization.
等离子体金属纳米结构具有独特的能力,能够通过局部表面等离子体共振(LSPR)有效增强太阳光捕获,这可以诱导直接光催化反应。然而,只有具有相对较低电磁场增强幅度的金属纳米颗粒通常需要高光照强度来确保催化性能,这极大地限制了太阳能光催化效率。在此,我们设计了具有高电磁场增强的等离子体金纳米颗粒薄膜,以在低功率近红外光照射下实现高效催化活性。这项工作通过使用低光照强度将光热效应对反应的影响降至最低,并进一步揭示了等离子体激发的热电子对光化学反应的主要贡献。该研究为光催化反应中LSPR机制的研究提供了重要见解,并进一步提高了太阳能利用效率。