Suppr超能文献

分子与纳米材料上的等离激元驱动催化

Plasmon-Driven Catalysis on Molecules and Nanomaterials.

作者信息

Zhang Zhenglong, Zhang Chengyun, Zheng Hairong, Xu Hongxing

机构信息

School of Physics and Information Technology , Shaanxi Normal University , Xi'an 710062 , China.

School of Physics and Technology , Wuhan University , Wuhan 430072 , China.

出版信息

Acc Chem Res. 2019 Sep 17;52(9):2506-2515. doi: 10.1021/acs.accounts.9b00224. Epub 2019 Aug 19.

Abstract

As a new class of photocatalysts, plasmonic noble metal nanoparticles with the unique ability to harvest solar energy across the entire visible spectrum and produce effective energy conversion have been explored as a promising pathway for the energy crisis. The resonant excitation of surface plasmon resonance allows the nanoparticles to collect the energy of photons to form a highly enhanced electromagnetic field, and the energy stored in the plasmonic field can induce hot carriers in the metal. The hot electron-hole pairs ultimately dissipate by coupling to phonon modes of the metal nanoparticles, resulting in a higher lattice temperature. The plasmonic electromagnetic field, hot electrons, and heat can catalyze chemical reactions of reactants near the surface of the plasmonic metal nanoparticles. This Account summarizes recent theoretical and experimental advances on the excitation mechanisms and energy transfer pathways in the plasmonic catalysis on molecules. Especially, current advances on plasmon-driven crystal growth and transformation of nanomaterials are introduced. The efficiency of the chemical reaction can be dramatically increased by the plasmonic electromagnetic field because of its higher density of photons. Similar to traditional photocatalysis, energy overlap between the plasmonic field and the HOMO-LUMO gap of the reactant is needed to realize resonant energy transfer. For hot-carrier-driven catalysis, hot electrons generated by plasmon decay can be transferred to the reactant through the indirect electron transfer or direct electron excitation process. For this mechanism, the energy of hot electrons needs to overlap with the unoccupied orbitals of the reactant, and the particular chemical channel can be selectively enhanced by controlling the energy distribution of hot electrons. In addition, the local thermal effect following plasmon decay offers an opportunity to facilitate chemical reactions at room temperature. Importantly, surface plasmons can not only catalyze chemical reactions of molecules but also induce crystal growth and transformation of nanomaterials. As a new development in plasmonic catalysis, plasmon-driven crystal transformation reveals a more powerful aspect of the catalysis effect, which opens the new field of plasmonic catalysis. We believe that this Account will promote clear understanding of plasmonic catalysis on both molecules and materials and contribute to the design of highly tunable catalytic systems to realize crystal transformations that are essential to achieve efficient solar-to-chemical energy conversion.

摘要

作为一类新型光催化剂,具有在整个可见光谱范围内收集太阳能并实现有效能量转换独特能力的等离子体贵金属纳米颗粒,已被探索为解决能源危机的一条有前景的途径。表面等离子体共振的共振激发使纳米颗粒能够收集光子能量以形成高度增强的电磁场,并且存储在等离子体场中的能量可在金属中诱导产生热载流子。热电子 - 空穴对最终通过与金属纳米颗粒的声子模式耦合而耗散,导致晶格温度升高。等离子体电磁场、热电子和热量可催化等离子体金属纳米颗粒表面附近反应物的化学反应。本综述总结了近期关于分子等离子体催化中激发机制和能量转移途径的理论和实验进展。特别地,介绍了当前等离子体驱动的晶体生长和纳米材料转变方面的进展。由于等离子体电磁场具有更高的光子密度,化学反应效率可通过它显著提高。与传统光催化类似,需要等离子体场与反应物的最高占据分子轨道 - 最低未占据分子轨道(HOMO - LUMO)能隙之间的能量重叠来实现共振能量转移。对于热载流子驱动的催化,等离子体衰变产生的热电子可通过间接电子转移或直接电子激发过程转移到反应物。对于这种机制,热电子的能量需要与反应物的未占据轨道重叠,并且通过控制热电子的能量分布可选择性增强特定的化学通道。此外,等离子体衰变后的局部热效应为在室温下促进化学反应提供了机会。重要的是,表面等离子体不仅可催化分子的化学反应,还能诱导纳米材料的晶体生长和转变。作为等离子体催化的一个新发展,等离子体驱动的晶体转变揭示了催化作用更强大的一面,这开辟了等离子体催化的新领域。我们相信本综述将促进对分子和材料的等离子体催化的清晰理解,并有助于设计高度可调谐的催化系统以实现对高效太阳能 - 化学能转换至关重要的晶体转变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验