Suppr超能文献

基于单目视觉的 3D 环境感知自校准概率框架。

A Self-Calibrating Probabilistic Framework for 3D Environment Perception Using Monocular Vision.

机构信息

Technical University of Cluj-Napoca, St. Memorandumului 28, 400114 Cluj-Napoca, Romania.

出版信息

Sensors (Basel). 2020 Feb 27;20(5):1280. doi: 10.3390/s20051280.

Abstract

Cameras are sensors that are available anywhere and to everyone, and can be placed easily inside vehicles. While stereovision setups of two or more synchronized cameras have the advantage of directly extracting 3D information, a single camera can be easily set up behind the windshield (like a dashcam), or above the dashboard, usually as an internal camera of a mobile phone placed there for navigation assistance. This paper presents a framework for extracting and tracking obstacle 3D data from the surrounding environment of a vehicle in traffic, using as a sensor a generic camera. The system combines the strength of Convolutional Neural Network (CNN)-based segmentation with a generic probabilistic model of the environment, the dynamic occupancy grid. The main contributions presented in this paper are the following: A method for generating the probabilistic measurement model from monocular images, based on CNN segmentation, which takes into account the particularities, uncertainties, and limitations of monocular vision; a method for automatic calibration of the extrinsic and intrinsic parameters of the camera, without the need of user assistance; the integration of automatic calibration and measurement model generation into a scene tracking system that is able to work with any camera to perceive the obstacles in real traffic. The presented system can be easily fitted to any vehicle, working standalone or together with other sensors, to enhance the environment perception capabilities and improve the traffic safety.

摘要

相机是无处不在、人人可用的传感器,并且可以轻松地安装在车辆内部。虽然两个或更多同步相机的立体视觉设置具有直接提取 3D 信息的优势,但单个相机可以轻松地安装在挡风玻璃后面(如行车记录仪),或安装在仪表板上方,通常是作为放在那里用于导航辅助的手机内置摄像头。本文提出了一种使用通用相机从车辆交通环境中提取和跟踪障碍物 3D 数据的框架。该系统结合了基于卷积神经网络 (CNN) 的分割与环境通用概率模型(动态占据网格)的优势。本文提出的主要贡献如下:一种基于 CNN 分割的从单目图像生成概率测量模型的方法,该方法考虑了单目视觉的特殊性、不确定性和局限性;一种无需用户协助即可自动校准相机外参和内参的方法;自动校准和测量模型生成的集成到一个能够使用任何相机在实际交通中感知障碍物的场景跟踪系统中。所提出的系统可以轻松地安装在任何车辆上,独立工作或与其他传感器一起工作,以增强环境感知能力并提高交通安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验