文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

髓源性抑制细胞作为癌症治疗靶点。

Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer.

机构信息

Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 2010 Sydney NSW, Australia.

Histone Variants Group, Garvan Institute of Medical Research, 2010 Sydney NSW, Australia.

出版信息

Cells. 2020 Feb 27;9(3):561. doi: 10.3390/cells9030561.


DOI:10.3390/cells9030561
PMID:32121014
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7140518/
Abstract

The emergence of immunotherapy has been an astounding breakthrough in cancer treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported to be varied, with some having pronounced success and others with minimal to no clinical benefit. An important aspect associated with this discrepancy in patient response is the immune-suppressive effects elicited by the tumour microenvironment (TME). Immune suppression plays a pivotal role in regulating cancer progression, metastasis, and reducing immunotherapy success. Most notably, myeloid-derived suppressor cells (MDSC), a heterogeneous population of immature myeloid cells, have potent mechanisms to inhibit T-cell and NK-cell activity to promote tumour growth, development of the pre-metastatic niche, and contribute to resistance to immunotherapy. Accumulating research indicates that MDSC can be a therapeutic target to alleviate their pro-tumourigenic functions and immunosuppressive activities to bolster the efficacy of checkpoint inhibitors. In this review, we provide an overview of the general immunotherapeutic approaches and discuss the characterisation, expansion, and activities of MDSCs with the current treatments used to target them either as a single therapeutic target or synergistically in combination with immunotherapy.

摘要

免疫疗法的出现是癌症治疗的惊人突破。特别是,针对 PD-1 和 CTLA-4 的免疫检查点抑制剂已经显示出显著的治疗效果。然而,免疫疗法的反应率报道各不相同,有些效果显著,而有些则几乎没有临床获益。与患者反应差异相关的一个重要方面是肿瘤微环境 (TME) 引起的免疫抑制作用。免疫抑制在调节癌症进展、转移和降低免疫疗法成功方面起着关键作用。值得注意的是,髓系来源的抑制细胞 (MDSC) 是一种异质性的未成熟髓系细胞群体,具有强大的机制来抑制 T 细胞和 NK 细胞的活性,从而促进肿瘤生长、前转移龛的形成,并导致对免疫疗法的耐药性。越来越多的研究表明,MDSC 可以成为一种治疗靶点,以减轻其促肿瘤发生的功能和免疫抑制活性,从而增强检查点抑制剂的疗效。在这篇综述中,我们概述了一般的免疫治疗方法,并讨论了 MDSC 的特征、扩增和活性,以及目前用于靶向 MDSC 的治疗方法,无论是作为单一治疗靶点还是与免疫疗法协同使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/894cae097e47/cells-09-00561-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/98c378e94e61/cells-09-00561-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/cdf8fc6df839/cells-09-00561-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/04e93c46b160/cells-09-00561-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/aff5a745a6f2/cells-09-00561-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/ea6eb2176232/cells-09-00561-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/299d76946a34/cells-09-00561-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/894cae097e47/cells-09-00561-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/98c378e94e61/cells-09-00561-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/cdf8fc6df839/cells-09-00561-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/04e93c46b160/cells-09-00561-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/aff5a745a6f2/cells-09-00561-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/ea6eb2176232/cells-09-00561-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/299d76946a34/cells-09-00561-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef4/7140518/894cae097e47/cells-09-00561-g007.jpg

相似文献

[1]
Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer.

Cells. 2020-2-27

[2]
Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors.

Front Immunol. 2020

[3]
Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy.

J Leukoc Biol. 2017-9

[4]
Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression.

Front Immunol. 2018-3-2

[5]
Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy.

Mol Cancer. 2022-9-26

[6]
Immunotherapy of targeting MDSCs in tumor microenvironment.

Front Immunol. 2022

[7]
The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion.

Front Immunol. 2020

[8]
Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment.

Front Immunol. 2021

[9]
Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression.

Br J Cancer. 2018-11-9

[10]
Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives.

Life Sci. 2021-7-15

引用本文的文献

[1]
Cancer-Associated Fibroblasts: Immunosuppressive Crosstalk with Tumor-Infiltrating Immune Cells and Implications for Therapeutic Resistance.

Cancers (Basel). 2025-7-28

[2]
Immunosuppressive cells in acute myeloid leukemia: mechanisms and therapeutic target.

Front Immunol. 2025-7-23

[3]
Development of a PPP1R14B-associated immune prognostic model for hepatocellular carcinoma.

Eur J Med Res. 2025-8-6

[4]
Nanomedicine-induced pyroptosis for anti-tumor immunotherapy: Mechanism analysis and application prospects.

Acta Pharm Sin B. 2025-7

[5]
NF-κB in inflammation and cancer.

Cell Mol Immunol. 2025-6-25

[6]
Myeloid-derived suppressor cells modulation in the context of tumor microenvironment for gastric cancer.

Clin Transl Oncol. 2025-6-24

[7]
Global hotspots and trends in pre-metastatic niche research: a bibliometric analysis(2005-2024).

Front Immunol. 2025-5-29

[8]
Synergistic chemotherapy and immunomodulatory effects of Quercetin in cancer: a review.

Front Immunol. 2025-5-26

[9]
Spleen Volume Dynamics and Survival Outcomes in HCC Patients Undergoing Immune Checkpoint Inhibitors: A Retrospective Analysis.

J Hepatocell Carcinoma. 2025-5-30

[10]
Myeloid-Derived Suppressor Cells in Cancer: Mechanistic Insights and Targeted Therapeutic Innovations.

MedComm (2020). 2025-5-31

本文引用的文献

[1]
Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy.

JCI Insight. 2019-4-4

[2]
Current Challenges in Cancer Immunotherapy: Multimodal Approaches to Improve Efficacy and Patient Response Rates.

J Oncol. 2019-2-28

[3]
Therapeutic Cancer Vaccine and Combinations With Antiangiogenic Therapies and Immune Checkpoint Blockade.

Front Immunol. 2019-3-14

[4]
Turning the corner on therapeutic cancer vaccines.

NPJ Vaccines. 2019-2-8

[5]
S100A9-induced overexpression of PD-1/PD-L1 contributes to ineffective hematopoiesis in myelodysplastic syndromes.

Leukemia. 2019-2-8

[6]
Vaccine Strategies to Improve Anti-cancer Cellular Immune Responses.

Front Immunol. 2019-1-22

[7]
Single-Cell Transcriptomics in Cancer Immunobiology: The Future of Precision Oncology.

Front Immunol. 2018-11-12

[8]
Adoptive cellular therapies: the current landscape.

Virchows Arch. 2018-11-23

[9]
STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial.

J Immunother Cancer. 2018-11-16

[10]
Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression.

Front Immunol. 2018-10-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索