Suppr超能文献

全瓷冠不同颈缘线设计应用于乳磨牙的有限元分析比较

Comparison of Different Cervical Finish Lines of All-Ceramic Crowns on Primary Molars in Finite Element Analysis.

作者信息

Pan Chin-Yun, Lan Ting-Hsun, Liu Pao-Hsin, Fu Wan-Ru

机构信息

Division of Orthodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.

Division of Prosthodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.

出版信息

Materials (Basel). 2020 Mar 1;13(5):1094. doi: 10.3390/ma13051094.

Abstract

This study aimed to conduct a stress analysis of four types of cervical finish lines in posterior all-ceramic crowns on the primary roots of molar teeth. Four different types of finish lines (shoulder 0.5 mm, feather-edged, chamfer 0.6 mm, and mini chamfer 0.4 mm) and two all-ceramic crown materials (zirconia and lithium disilicate) were used to construct eight finite element primary tooth models with full-coverage crowns. A load of 200 N was applied at two different loading angles (0° and 15°) so as to mimic children's masticatory force and occlusal tendency. The maximum stress distribution from the three-dimensional finite element models was determined, and the main effect of each factor (loading type, material, and finish line types) was evaluated in terms of the stress values for all of the models. The results indicated that the loading type (90.25%) was the main factor influencing the maximum stress value of the primary root, and that the feather-edged margin showed the highest stress value ( = 0.002). In conclusion, shoulder and chamfer types of finish lines with a 0.4-0.6 mm thickness are recommended for deciduous tooth preparation, according to the biomechanical analysis.

摘要

本研究旨在对磨牙乳牙牙根全瓷冠的四种颈缘线进行应力分析。使用四种不同类型的颈缘线(0.5mm肩台、羽状边缘、0.6mm倒凹和0.4mm微倒凹)和两种全瓷冠材料(氧化锆和二硅酸锂)构建八个覆盖全冠的有限元乳牙模型。在两个不同的加载角度(0°和15°)施加200N的载荷,以模拟儿童的咀嚼力和咬合倾向。确定三维有限元模型的最大应力分布,并根据所有模型的应力值评估每个因素(加载类型、材料和颈缘线类型)的主要影响。结果表明,加载类型(90.25%)是影响乳牙牙根最大应力值的主要因素,羽状边缘的应力值最高(P = 0.002)。总之,根据生物力学分析,建议乳牙预备采用厚度为0.4 - 0.6mm的肩台和倒凹型颈缘线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a03d/7084989/b1d1ab3bb4f9/materials-13-01094-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验