Suppr超能文献

测量诱导几何相位中的拓扑转变。

Topological transition in measurement-induced geometric phases.

作者信息

Gebhart Valentin, Snizhko Kyrylo, Wellens Thomas, Buchleitner Andreas, Romito Alessandro, Gefen Yuval

机构信息

Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.

Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5706-5713. doi: 10.1073/pnas.1911620117. Epub 2020 Mar 2.

Abstract

The state of a quantum system, adiabatically driven in a cycle, may acquire a measurable phase depending only on the closed trajectory in parameter space. Such geometric phases are ubiquitous and also underline the physics of robust topological phenomena such as the quantum Hall effect. Equivalently, a geometric phase may be induced through a cyclic sequence of quantum measurements. We show that the application of a sequence of weak measurements renders the closed trajectories, hence the geometric phase, stochastic. We study the concomitant probability distribution and show that, when varying the measurement strength, the mapping between the measurement sequence and the geometric phase undergoes a topological transition. Our finding may impact measurement-induced control and manipulation of quantum states-a promising approach to quantum information processing. It also has repercussions on understanding the foundations of quantum measurement.

摘要

一个在循环中被绝热驱动的量子系统的状态,可能会获得一个仅取决于参数空间中闭合轨迹的可测量相位。这种几何相位无处不在,并且也是诸如量子霍尔效应等稳健拓扑现象的物理基础。等效地,一个几何相位可以通过量子测量的循环序列来诱导。我们表明,一系列弱测量的应用使闭合轨迹以及几何相位变得随机。我们研究了伴随的概率分布,并表明,当改变测量强度时,测量序列与几何相位之间的映射会经历拓扑转变。我们的发现可能会影响对量子态的测量诱导控制和操纵——这是一种很有前景的量子信息处理方法。它对理解量子测量的基础也有影响。

相似文献

1
Topological transition in measurement-induced geometric phases.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5706-5713. doi: 10.1073/pnas.1911620117. Epub 2020 Mar 2.
2
Geometric diffusion of quantum trajectories.
Sci Rep. 2015 Jul 16;5:12109. doi: 10.1038/srep12109.
3
Topological transport of sound mediated by spin-redirection geometric phase.
Sci Adv. 2018 Feb 16;4(2):eaaq1475. doi: 10.1126/sciadv.aaq1475. eCollection 2018 Feb.
4
Observation of topological transitions in interacting quantum circuits.
Nature. 2014 Nov 13;515(7526):241-4. doi: 10.1038/nature13891.
5
Topological transitions of the generalized Pancharatnam-Berry phase.
Sci Adv. 2023 Nov 24;9(47):eadg6810. doi: 10.1126/sciadv.adg6810.
7
Exploring 2D Synthetic Quantum Hall Physics with a Quasiperiodically Driven Qubit.
Phys Rev Lett. 2020 Oct 16;125(16):160505. doi: 10.1103/PhysRevLett.125.160505.
8
Measurement of the quantum geometric tensor and of the anomalous Hall drift.
Nature. 2020 Feb;578(7795):381-385. doi: 10.1038/s41586-020-1989-2. Epub 2020 Feb 19.
9
Berry phase in an anti-PT symmetric metal-semiconductor complex system.
Opt Express. 2019 Aug 5;27(16):22237-22245. doi: 10.1364/OE.27.022237.
10
Exploring 4D quantum Hall physics with a 2D topological charge pump.
Nature. 2018 Jan 3;553(7686):55-58. doi: 10.1038/nature25000.

引用本文的文献

1
Topological transitions of the generalized Pancharatnam-Berry phase.
Sci Adv. 2023 Nov 24;9(47):eadg6810. doi: 10.1126/sciadv.adg6810.

本文引用的文献

1
Heat and Work Along Individual Trajectories of a Quantum Bit.
Phys Rev Lett. 2020 Mar 20;124(11):110604. doi: 10.1103/PhysRevLett.124.110604.
2
To catch and reverse a quantum jump mid-flight.
Nature. 2019 Jun;570(7760):200-204. doi: 10.1038/s41586-019-1287-z. Epub 2019 Jun 3.
3
Mapping the optimal route between two quantum states.
Nature. 2014 Jul 31;511(7511):570-3. doi: 10.1038/nature13559.
4
Observing single quantum trajectories of a superconducting quantum bit.
Nature. 2013 Oct 10;502(7470):211-4. doi: 10.1038/nature12539.
5
Null values and quantum state discrìmination.
Phys Rev Lett. 2013 Apr 26;110(17):170405. doi: 10.1103/PhysRevLett.110.170405. Epub 2013 Apr 25.
6
General setting for Berry's phase.
Phys Rev Lett. 1988 Jun 6;60(23):2339-2342. doi: 10.1103/PhysRevLett.60.2339.
7
How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100.
Phys Rev Lett. 1988 Apr 4;60(14):1351-1354. doi: 10.1103/PhysRevLett.60.1351.
8
Phase change during a cyclic quantum evolution.
Phys Rev Lett. 1987 Apr 20;58(16):1593-1596. doi: 10.1103/PhysRevLett.58.1593.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验