CNR NANOTEC, Istituto di Nanotecnologia, Lecce, Italy.
Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand, France.
Nature. 2020 Feb;578(7795):381-385. doi: 10.1038/s41586-020-1989-2. Epub 2020 Feb 19.
Topological physics relies on the structure of the eigenstates of the Hamiltonians. The geometry of the eigenstates is encoded in the quantum geometric tensor-comprising the Berry curvature (crucial for topological matter) and the quantum metric, which defines the distance between the eigenstates. Knowledge of the quantum metric is essential for understanding many phenomena, such as superfluidity in flat bands, orbital magnetic susceptibility, the exciton Lamb shift and the non-adiabatic anomalous Hall effect. However, the quantum geometry of energy bands has not been measured. Here we report the direct measurement of both the Berry curvature and the quantum metric in a two-dimensional continuous medium-a high-finesse planar microcavity-together with the related anomalous Hall drift. The microcavity hosts strongly coupled exciton-photon modes (exciton polaritons) that are subject to photonic spin-orbit coupling from which Dirac cones emerge, and to exciton Zeeman splitting, breaking time-reversal symmetry. The monopolar and half-skyrmion pseudospin textures are measured using polarization-resolved photoluminescence. The associated quantum geometry of the bands is extracted, enabling prediction of the anomalous Hall drift, which we measure independently using high-resolution spatially resolved epifluorescence. Our results unveil the intrinsic chirality of photonic modes, the cornerstone of topological photonics. These results also experimentally validate the semiclassical description of wavepacket motion in geometrically non-trivial bands. The use of exciton polaritons (interacting photons) opens up possibilities for future studies of quantum fluid physics in topological systems.
拓扑物理学依赖于哈密顿量本征态的结构。本征态的几何形状被编码在量子几何张量中,包括贝里曲率(对拓扑物质至关重要)和量子度量,它定义了本征态之间的距离。了解量子度量对于理解许多现象至关重要,例如平带中的超流、轨道磁致伸缩、激子兰姆位移和非绝热反常霍尔效应。然而,能带的量子几何尚未被测量。在这里,我们报告了在二维连续介质-高精细度平面微腔-中直接测量贝里曲率和量子度量,以及相关的反常霍尔漂移。微腔中存在强耦合激子-光子模式(激子极化激元),这些模式受到光子自旋轨道耦合的影响,从其中出现狄拉克锥,并受到激子塞曼分裂,破坏时间反演对称性。使用偏振分辨光致发光测量了单极子和半斯格明子赝自旋纹理。提取了相关能带的量子几何,从而能够预测反常霍尔漂移,我们使用高分辨率空间分辨外荧光法独立测量。我们的结果揭示了光子模式的固有手性,这是拓扑光子学的基石。这些结果还实验验证了波包在几何非平凡能带中运动的半经典描述。激子极化激元(相互作用光子)的使用为未来在拓扑系统中研究量子流体物理开辟了可能性。