Suppr超能文献

帕金森病患者左旋多巴运动反应的数学建模和参数估计。

Mathematical modeling and parameter estimation of levodopa motor response in patients with parkinson disease.

机构信息

Department of Electrical, Electronic and Information Engineering, University of Bologna, Cesena, Italy.

IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.

出版信息

PLoS One. 2020 Mar 3;15(3):e0229729. doi: 10.1371/journal.pone.0229729. eCollection 2020.

Abstract

Parkinson disease (PD) is characterized by a clear beneficial motor response to levodopa (LD) treatment. However, with disease progression and longer LD exposure, drug-related motor fluctuations usually occur. Recognition of the individual relationship between LD concentration and its effect may be difficult, due to the complexity and variability of the mechanisms involved. This work proposes an innovative procedure for the automatic estimation of LD pharmacokinetics and pharmacodynamics parameters, by a biologically-inspired mathematical model. An original issue, compared with previous similar studies, is that the model comprises not only a compartmental description of LD pharmacokinetics in plasma and its effect on the striatal neurons, but also a neurocomputational model of basal ganglia action selection. Parameter estimation was achieved on 26 patients (13 with stable and 13 with fluctuating LD response) to mimic plasma LD concentration and alternate finger tapping frequency along four hours after LD administration, automatically minimizing a cost function of the difference between simulated and clinical data points. Results show that individual data can be satisfactorily simulated in all patients and that significant differences exist in the estimated parameters between the two groups. Specifically, the drug removal rate from the effect compartment, and the Hill coefficient of the concentration-effect relationship were significantly higher in the fluctuating than in the stable group. The model, with individualized parameters, may be used to reach a deeper comprehension of the PD mechanisms, mimic the effect of medication, and, based on the predicted neural responses, plan the correct management and design innovative therapeutic procedures.

摘要

帕金森病(PD)的特征是左旋多巴(LD)治疗有明显的有益运动反应。然而,随着疾病的进展和 LD 暴露时间的延长,通常会出现与药物相关的运动波动。由于涉及的机制复杂且多变,因此可能难以识别 LD 浓度与其作用之间的个体关系。本工作通过生物启发的数学模型提出了一种自动估计 LD 药代动力学和药效学参数的创新方法。与以前的类似研究相比,一个原创问题是该模型不仅包括 LD 药代动力学在血浆中的房室描述及其对纹状体神经元的影响,还包括基底神经节动作选择的神经计算模型。对 26 名患者(13 名 LD 反应稳定,13 名 LD 反应波动)进行了参数估计,以模拟 LD 给药后四个小时内的血浆 LD 浓度和交替手指敲击频率,通过最小化模拟和临床数据点之间差异的成本函数自动完成。结果表明,所有患者的个体数据都可以得到很好的模拟,并且两组之间的估计参数存在显著差异。具体来说,在波动组中,从效应室中清除药物的速度和浓度-效应关系的 Hill 系数明显高于稳定组。具有个体参数的模型可用于更深入地了解 PD 机制,模拟药物的作用,并根据预测的神经反应,规划正确的管理和设计创新的治疗程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57a9/7053720/daacee789f2d/pone.0229729.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验